Affiliations 

  • 1 Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia. Electronic address: saadtayyab2004@um.edu.my
  • 2 Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
  • 3 Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
  • 4 Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia
Spectrochim Acta A Mol Biomol Spectrosc, 2019 Jan 15;207:284-293.
PMID: 30267976 DOI: 10.1016/j.saa.2018.09.033

Abstract

To characterize the binding of a widely used herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D) to the major transporter in human circulation, human serum albumin (HSA), multi-spectroscopic approaches such as fluorescence, absorption and circular dichroism along with computational methods were employed. Analysis of the fluorescence and absorption spectroscopic data confirmed the 2,4-D-HSA complex formation. A static quenching mechanism was evident from the inverse temperature dependence of the KSV values. The complex was stabilized by a weak binding affinity (Ka = 5.08 × 103 M-1 at 298 K). Quantitative analysis of thermodynamic data revealed participation of hydrophobic and van der Waals interactions as well as hydrogen bonds in the binding process. Circular dichroism and three-dimensional fluorescence spectral results showed structural (secondary and tertiary) changes in HSA as well as microenvironmental perturbation around protein fluorophores (Trp and Tyr residues) upon 2,4-D binding. Addition of 2,4-D to HSA was found to improve protein's thermal stability. Competitive displacement results as well as computational analyses suggested preferred location of the 2,4-D binding site as Sudlow's site I (subdomain IIA) in HSA.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.