Affiliations 

  • 1 Universiti Malaysia Terengganu
ASM Science Journal, 2018;11(101):86-95.
MyJurnal

Abstract

A feasible production of poly (methyl methacrylate)@alloy (gold-silver) core shell has
been presented as candidate in enhanced detection of surface enhanced Raman scattering
(SERS). Free emulsifier- emulsion synthesised PMMA sphere with average size of 419 nm in
diameter were used as core material for incorporation of alloy nanoparticles (6 nm) resulting
a core-shell structure. The fabrication of PMMA@alloy SERS substrate was successfully
done via self-assembly thus the produced SERS substrate that comprise of unique optical
properties combination arising from periodic core arrangement and plasmonic activity of
alloy nanoparticles. Alloy is bimetallic nanoparticles in which the combination of silver
(Ag) and gold (Au) present an absolutely improved light resistance as compared to single
metal alone with great surface plasmon resonance. Morphology and elemental analysis was
performed through scanning electron microscope (SEM) and the analysis showing species of
both Au and Ag in single alloy nanoparticles. The alloy nanoparticles were also observed to
homogenously coating the PMMA sphere. Surface plasmon resonance activity was maximum
at 476 nm obtained from UV-Visible spectroscopy. High surface production was observed
to have periodically arranged PMMA@alloy core -shell and potentially to be used as SERS
substrate.