Displaying publications 1 - 20 of 241 in total

  1. Haryati Yaacob, Mohd Rosli Hainin, Ahmad Safuan, Chag FL
    Sains Malaysiana, 2014;43:467-474.
    Quality of bond between layers of asphaltic concrete course is a key element to ensure the performance of a modern asphalt pavement. A proper interlayer bond ensures the structural integrity of the pavement and prevents possible distresses from occurring within the designed service life. In Malaysia, delamination is a common distress related to insufficient degree of adhesion though slippage failure can be occasionally encountered. Generally, bond development is closely related to the design factors and construction factors. This paper however focused on the construction factors only, hoping to provide some useful information which might be overlooked by the contractors during construction but is of extreme important especially in enhancing the bond development in the asphalt layers. The construction factors in particular interest discussed in this paper include curing time of asphalt emulsion, surface condition of a pavement and technology and quality of workmanship and construction. It is important to note that both design factors and construction factors are inter-related in optimizing the degree of adhesion. Thus, all factors need to be carefully identified and fulfilled in order to maximize the bond strength between pavement surfacing layers for a better quality and longer service life of pavement in Malaysia.
    Matched MeSH terms: Emulsions
  2. Wong SK, Supramaniam J, Wong TW, Soottitantawat A, Ruktanonchai UR, Tey BT, et al.
    Carbohydr Res, 2021 Jun;504:108336.
    PMID: 33964507 DOI: 10.1016/j.carres.2021.108336
    The development of hybrid polysaccharide-protein complexes as Pickering emulsion stabilizers has attracted increasing research interest in recent years. This work presents an eco-friendly surface modification strategy to functionalize hydrophilic cellulose nanocrystals (CNC) using hydrophobic soy protein isolate (SPI) via mussel adhesive-inspired poly (l-dopa) (PLD) to develop improved nanoconjugates as stabilizers for oil-in-water Pickering emulsion. The physicochemical properties of the CNC-PLD-SPI nanoconjugate were evaluated by solid-state 13C NMR, FT-IR, TGA, XRD, contact angle analysis, and TEM. The modified CNC (conjugation content of 38.22 ± 1.21%) had lowered crystallinity index, higher thermal stability, and more hydrophobic than unmodified CNC, with an average particle size of 309.9 ± 8.0 nm. Use of amphiphilic CNC-PLD-SPI nanoconjugate with greater conformational flexibility as Pickering stabilizer produced oil-in-water emulsions with greater physical stability.
    Matched MeSH terms: Emulsions
  3. Goyal RK, Jayakumar NS, Hashim MA
    J Hazard Mater, 2011 Nov 15;195:383-90.
    PMID: 21920664 DOI: 10.1016/j.jhazmat.2011.08.056
    A comparative study on the optimization of process parameters of an emulsion ionic liquid membrane (EILM) by experimental work and response surface methodology (RSM) has been carried out. EILM was prepared by using kerosene as solvent, Span 80 as surfactant, NaOH as internal reagent, a hydrophobic ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM](+)[NTf(2)](-)) as a stabilizer and a second ionic liquid tri-n-octylmethylammonium chloride (TOMAC) as a carrier. The prepared EILM was used to separate and concentrate Cr from wastewaters. The comparison between the experimentally optimized and the RSM optimized values was accomplished by optimizing the following parameters: homogenization speed, carrier concentration, internal phase concentration, agitation speed, treat ratio, internal to membrane phase ratio, surfactant concentration and pH of the feed phase. The comparison showed that all the values were in good agreement except for the internal phase concentration and the treat ratio. It was observed that the stability provided by [BMIM](+)[NTf(2)](-) decreased as the extraction progressed due to its high density. Nevertheless, a good stability could be obtained by the combination of [BMIM](+)[NTf(2)](-) and Span 80 during extraction process.
    Matched MeSH terms: Emulsions*
  4. Teo SH, Chee CY, Fahmi MZ, Wibawa Sakti SC, Lee HV
    Molecules, 2022 Oct 23;27(21).
    PMID: 36363998 DOI: 10.3390/molecules27217170
    In the past few years, the research on particle-stabilized emulsion (Pickering emulsion) has mainly focused on the usage of inorganic particles with well-defined shapes, narrow size distributions, and chemical tunability of the surfaces such as silica, alumina, and clay. However, the presence of incompatibility of some inorganic particles that are non-safe to humans and the ecosystem and their poor sustainability has led to a shift towards the development of materials of biological origin. For this reason, nano-dimensional cellulose (nanocellulose) derived from natural plants is suitable for use as a Pickering material for liquid interface stabilization for various non-toxic product formulations (e.g., the food and beverage, cosmetic, personal care, hygiene, pharmaceutical, and biomedical fields). However, the current understanding of nanocellulose-stabilized Pickering emulsion still lacks consistency in terms of the structural, self-assembly, and physio-chemical properties of nanocellulose towards the stabilization between liquid and oil interfaces. Thus, this review aims to provide a comprehensive study of the behavior of nanocellulose-based particles and their ability as a Pickering functionality to stabilize emulsion droplets. Extensive discussion on the characteristics of nanocelluloses, morphology, and preparation methods that can potentially be applied as Pickering emulsifiers in a different range of emulsions is provided. Nanocellulose's surface modification for the purpose of altering its characteristics and provoking multifunctional roles for high-grade non-toxic applications is discussed. Subsequently, the water-oil stabilization mechanism and the criteria for effective emulsion stabilization are summarized in this review. Lastly, we discuss the toxicity profile and risk assessment guidelines for the whole life cycle of nanocellulose from the fresh feedstock to the end-life of the product.
    Matched MeSH terms: Emulsions/chemistry
  5. Mat Yusoff M, Gordon MH, Ezeh O, Niranjan K
    Food Chem, 2016 Nov 15;211:400-8.
    PMID: 27283648 DOI: 10.1016/j.foodchem.2016.05.050
    This paper reports on the extraction of Moringa oleifera (MO) oil by using aqueous enzymatic extraction (AEE) method. The effect of different process parameters on the oil recovery was discovered by using statistical optimization, besides the effect of selected parameters on the formation of its oil-in-water cream emulsions. Within the pre-determined ranges, the use of pH 4.5, moisture/kernel ratio of 8:1 (w/w), and 300stroke/min shaking speed at 40°C for 1h incubation time resulted in highest oil recovery of approximately 70% (goil/g solvent-extracted oil). These optimized parameters also result in a very thin emulsion layer, indicating minute amount of emulsion formed. Zero oil recovery with thick emulsion were observed when the used aqueous phase was re-utilized for another AEE process. The findings suggest that the critical selection of AEE parameters is key to high oil recovery with minimum emulsion formation thereby lowering the load on the de-emulsification step.
    Matched MeSH terms: Emulsions/analysis; Emulsions/metabolism
  6. Rehman FU, Shah KU, Shah SU, Khan IU, Khan GM, Khan A
    Expert Opin Drug Deliv, 2017 Nov;14(11):1325-1340.
    PMID: 27485144 DOI: 10.1080/17425247.2016.1218462
    INTRODUCTION: Lipid-based drug delivery systems (LBDDS) are the most promising technique to formulate the poorly water soluble drugs. Nanotechnology strongly influences the therapeutic performance of hydrophobic drugs and has become an essential approach in drug delivery research. Self-nanoemulsifying drug delivery systems (SNEDDS) are a vital strategy that combines benefits of LBDDS and nanotechnology. SNEDDS are now preferred to improve the formulation of drugs with poor aqueous solubility. Areas covered: The review in its first part shortly describes the LBDDS, nanoemulsions and clarifies the ambiguity between nanoemulsions and microemulsions. In the second part, the review discusses SNEDDS and elaborates on the current developments and modifications in this area without discussing their associated preparation techniques and excipient properties. Expert opinion: SNEDDS have exhibit the potential to increase the bioavailability of poorly water soluble drugs. The stability of SNEDDS is further increased by solidification. Controlled release and supersaturation can be achieved, and are associated with increased patient compliance and improved drug loads, respectively. Presence of biodegradable ingredients and ease of large-scale manufacturing combined with a lot of 'drug-targeting opportunities' give SNEDDS a clear distinction and prominence over other solubility enhancement techniques.
    Matched MeSH terms: Emulsions/administration & dosage*; Emulsions/chemistry
  7. Choudhury H, Gorain B, Chatterjee B, Mandal UK, Sengupta P, Tekade RK
    Curr Pharm Des, 2017;23(17):2504-2531.
    PMID: 27908273 DOI: 10.2174/1381612822666161201143600
    BACKGROUND: Most of the active pharmaceutical ingredients discovered recently in pharmaceutical field exhibits poor aqueous solubility that pose major problem in their oral administration. The oral administration of these drugs gets further complicated due to their short bioavailability, inconsistent absorption and inter/intra subject variability.

    METHODS: Pharmaceutical emulsion holds a significant place as a primary choice of oral drug delivery system for lipophilic drugs used in pediatric and geriatric patients. Pharmacokinetic studies on nanoemulsion mediated drugs delivery approach indicates practical feasibility in regards to their clinical translation and commercialization.

    RESULTS: This review article is to provide an updated understanding on pharmacokinetic and pharmacodynamic features of nanoemulsion delivered via oral, intravenous, topical and nasal route.

    CONCLUSION: The article is of huge interest to formulation scientists working on range of lipophilic drug molecules intended to be administered through oral, intravenous, topical and nasal routes for vivid medical benefits.

    Matched MeSH terms: Emulsions/administration & dosage*; Emulsions/chemistry*
  8. Ali TH, Hussen RS, Heidelberg T
    Colloids Surf B Biointerfaces, 2014 Nov 1;123:981-5.
    PMID: 25465761 DOI: 10.1016/j.colsurfb.2014.10.054
    A series of sugar-based surfactants, involving a single hydrophobic chain (C12) and two side-by-side arranged head groups, was prepared form simple glucose precursors. All surfactants were highly water soluble and exhibited exclusively micellar assemblies. This behavior makes them interesting candidates for oil in water emulsifiers.
    Matched MeSH terms: Emulsions/chemistry*
  9. Yahaya Khan M, Abdul Karim ZA, Hagos FY, Aziz AR, Tan IM
    ScientificWorldJournal, 2014;2014:527472.
    PMID: 24563631 DOI: 10.1155/2014/527472
    Water-in-diesel emulsion (WiDE) is an alternative fuel for CI engines that can be employed with the existing engine setup with no additional engine retrofitting. It has benefits of simultaneous reduction of both NO x and particulate matters in addition to its impact in the combustion efficiency improvement, although this needs further investigation. This review paper addresses the type of emulsion, the microexplosion phenomenon, emulsion stability and physiochemical improvement, and effect of water content on the combustion and emissions of WiDE fuel. The review also covers the recent experimental methodologies used in the investigation of WiDE for both transport and stationary engine applications. In this review, the fuel injection pump and spray nozzle arrangement has been found to be the most critical components as far as the secondary atomization is concerned and further investigation of the effect of these components in the microexplosion of the emulsion is suggested to be center of focus.
    Matched MeSH terms: Emulsions/chemistry*
  10. Tang SY, Sivakumar M, Nashiru B
    Colloids Surf B Biointerfaces, 2013 Feb 1;102:653-8.
    PMID: 23107943 DOI: 10.1016/j.colsurfb.2012.08.036
    The present investigation focuses in investigating the effect of osmotic pressure, gelling on the mean droplet diameter, polydispersity index, droplet size stability of the developed novel Aspirin containing water-in-oil-in-water (W/O/W) nano multiple emulsion. The aspirin-loaded nano multiple emulsion formulation was successfully generated using two-stage ultrasonic cavitational emulsification which had been reported in author's previous study. The osmotic behavior of ultrasonically prepared nano multiple emulsions were also examined with different glucose concentrations both in the inner and outer aqueous phases. In addition, introducing gelatin into the formulation also observed to play an important role in preventing the interdroplet coalescence via the formation of interfacial rigid film. Detailed studies were also made on the possible mechanisms of water migration under osmotic gradient which primarily caused by the permeation of glucose. Besides, the experimental results have shown that the interfacial tension between the two immiscible phases decreases with varying the composition of organic phase. Although the W/O/W emulsion prepared with the inner/outer glucose weight ratio of 1-0.5% (w/w) showed an excellent droplet stability, the formulation containing 0.5% (w/w) glucose in the inner aqueous phase appeared to be the most stable with minimum change in the mean droplet size upon one-week storage period. Based on the optimization, nano multiple emulsion droplets with the mean droplet diameter of around 400 nm were produced using 1.25% (w/w) Span 80 and 0.5% Cremophore EL. Overall, our investigation makes a pathway in proving that the use of ultrasound cavitation is an efficient yet promising approach in the generation of stable and uniform nano multiple emulsions and could be used in the encapsulation of various active pharmaceutical ingredients in the near future.
    Matched MeSH terms: Emulsions/chemistry*
  11. Han NS, Basri M, Abd Rahman MB, Abd Rahman RN, Salleh AB, Ismail Z
    J Cosmet Sci, 2012 Sep-Oct;63(5):333-44.
    PMID: 23089355
    Oil-in-water (O/W) nanoemulsions play an important key role in transporting bioactive compounds into a range of cosmeceutical products to the skin. Small droplet sizes have an inherent stability against creaming, sedimentation, flocculation, and coalescence. O/W emulsions varying in manufacturing process were prepared. The preparation and characterization of O/W nanoemulsions with average diameters of as low as 62.99 nm from palm oil esters were carried out. This was achieved using rotor-stator homogenizer and ultrasonic cavitation. Ultrasonic cell was utilized for the emulsification of palm oil esters and water in the presence of mixed surfactants, Tween 80 and Span 80 emulsions with a mean droplet size of 62.99 nm and zeta potential value at -37.8 mV. Results were comparable with emulsions prepared with rotor-stator homogenizer operated at 6000 rpm for 5 min. The stability of the emulsions was evaluated through rheology measurement properties. This included non-Newtonian viscosity, elastic modulus G', and loss modulus G″. A highly stable emulsion was prepared using ultrasonic cavitation comprising a very small particle size with higher zeta potential value and G' > G″ demonstrating gel-like behavior.
    Matched MeSH terms: Emulsions/chemistry*
  12. Goyal RK, Jayakumar NS, Hashim MA
    J Hazard Mater, 2011 Nov 15;195:55-61.
    PMID: 21962862 DOI: 10.1016/j.jhazmat.2011.03.024
    This study focuses on the role of a hydrophobic ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [BMIM](+)[NTf(2)](-) in the preparation of emulsion liquid membrane (ELM) phase containing kerosene as solvent, Span 80 as surfactant, NaOH as internal phase and TOMAC (tri-n-octylmethylammonium chloride) a second ionic liquid as carrier. The first time used [BMIM](+)[NTf(2)](-) in ELM was found to play the role of a stabilizer. The emulsion prepared using [BMIM](+) [NTf(2)](-) has a long period of stability of about 7h (at 3% (w/w) of [BMIM](+)[NTf(2)](-)) which otherwise has a brief stability up to only 7 min. The stability of the emulsion increases with the increase in concentration of [BMIM](+)[NTf(2)](-) up to 3% (w/w). Nevertheless, with further increase in concentration of [BMIM](+)[NTf(2)](-), a reduction in the stability occurs. The extraction experiments were carried out after holding the ELM for 2h after the preparation and a removal efficiency of approximately 80% was obtained for Cr. The destabilization of the emulsion was studied by observing the change in the interface height. An empirical correlation for the stability of the emulsion has been proposed.
    Matched MeSH terms: Emulsions*
  13. Ng YS, Jayakumar NS, Hashim MA
    J Hazard Mater, 2010 Dec 15;184(1-3):255-60.
    PMID: 20832168 DOI: 10.1016/j.jhazmat.2010.08.030
    The percentage removal of phenol from aqueous solution by emulsion liquid membrane and emulsion leakage was investigated experimentally for various parameters such as membrane:internal phase ratio, membrane:external phase ratio, emulsification speed, emulsification time, carrier concentration, surfactant concentration and internal agent concentration. These parameters strongly influence the percentage removal of phenol and emulsion leakage. Under optimum membrane properties, the percentage removal of phenol was as high as 98.33%, with emulsion leakage of 1.25%. It was also found that the necessity of carrier for enhancing phenol removal was strongly dependent on the internal agent concentration.
    Matched MeSH terms: Emulsions*
  14. Mat Hadzir N, Basri M, Abdul Rahman MB, Salleh AB, Raja Abdul Rahman RN, Basri H
    AAPS PharmSciTech, 2013 Mar;14(1):456-63.
    PMID: 23386307 DOI: 10.1208/s12249-013-9929-1
    Fatty acid esters are long-chain esters, produced from the reaction of fatty acids and alcohols. They possess potential applications in cosmetic and pharmaceutical formulations due to their excellent wetting behaviour at interfaces and a non-greasy feeling when applied on the skin surfaces. This preliminary work was carried out to construct pseudo-ternary phase diagrams for oleyl laurate, oleyl stearate and oleyl oleate with surfactants and piroxicam. Then, the preparation and optimization study via 'One-At-A-Time Approach' were carried out to determine the optimum amount of oil, surfactants and stabilizer using low-energy emulsification method. The results revealed that multi-phase region dominated the three pseudo-ternary phase diagrams. A composition was chosen from each multi-phase region for preparing the nanoemulsions systems containing piroxicam by incorporating a hydrocolloid stabilizer. The results showed that the optimum amount (w/w) of oil for oleyl laurate nanoemulsions was 30 and 20 g (w/w) for oleyl stearate nanoemulsions and oleyl oleate nanoemulsions. For each nanoemulsions system, the amount of mixed surfactants and stabilizer needed for the emulsification to take place was found to be 10 and 0.5 g (w/w), respectively. The emulsification process via high-energy emulsification method successfully produced nano-sized range particles. The nanoemulsions systems passed the centrifugation test and freeze-thaw cycle with no phase failures, and stable for 3 months at various storage temperatures (3°C, 25°C and 45°C). The results proved that the prepared nanoemulsions system cannot be formed spontaneously, and thus, energy input was required to produce nano-sized range particles.
    Matched MeSH terms: Emulsions*
  15. Teh SS, Lau HLN, Mah SH
    J Oleo Sci, 2019 Aug 01;68(8):803-808.
    PMID: 31292345 DOI: 10.5650/jos.ess19098
    Refined palm-pressed mesocarp fibre oil (PPFO), which can be obtained from one of the by-products of palm oil milling, palm-pressed mesocarp fibre, is categorized as palm sludge oil. So far, it has been given less attention and underutilized until some recent scientific reports revealing its high content of phytonutrients, carotenoids and vitamin E, which have been proven scientifically to possess anti-oxidant activity. The study evaluated the stability of PPFO as a carrier for plant-based emulsion. PPFO was extracted and examined for its positional distribution of fatty acids, saturation levels and iodine value (IV) using NMR spectroscopy. The PPFO-based emulsion was then prepared and subjected to stability tests, including temperature variation, centrifuge test, cycle test, pH and slip melting point for 28 days. Phase separation was observed from PPFO-based emulsion stored at 40℃ from day-21 onwards while no creaming found in all the palm olein-based emulsions stored at the three storage temperatures. Nevertheless, results indicated that the PPFO-based emulsion passed all the tests above showing insignificant phase separation (p > 0.05) compared with those of palm olein commonly used in emulsion preparation. The findings suggested that PPFO enriched with valuable phytonutrients could be used as an alternative carrier oil in emulsion formulation, which is an important component in personal care products.
    Matched MeSH terms: Emulsions/chemistry*
  16. Mohsin SMN, Hasan ZAA
    Colloids Surf B Biointerfaces, 2023 Jan;221:113025.
    PMID: 36403417 DOI: 10.1016/j.colsurfb.2022.113025
    Oil-in-water (o/w) emulsion is utilized as an insecticide delivery system for mosquito control. However, evaporation inhibition adjuvant is needed to prevent fog drift, inhibit release of insecticidal actives and prolong suspension time. In the current study, we evaluated the effect of different short-chain alcohols, namely, propylene glycol, 1,3-propanediol, glycerol and crude glycerol, as adjuvants on the physicochemical properties of d-phenothrin o/w emulsion system. The bioactivity of optimized formulations containing 20 wt% glycerol (D1), 20 wt% propylene glycol (D2) and without added alcohol (negative control) were tested against larvae, pupae and adult Aedes aegypti (Ae. aegypti). It was found that propylene glycol produced smaller droplets at lower concentrations but poor long-term stability at higher concentrations, whereas glycerol had an appreciable effect on initial droplet size and stability with increasing concentration. According to the dose-response bioassays and room size chamber testing, the highest larvicidal, pupicidal and adulticidal activities were observed with D2, followed by D1 and negative control. Overall, the above study demonstrated improved emulsion stabilities and potency against Ae. aegypti larvae, pupae and adults using glycerol as adjuvant for effective mosquito control.
    Matched MeSH terms: Emulsions/pharmacology
  17. Santana P, Huda N, Yang TA
    J Food Sci Technol, 2015 Mar;52(3):1507-15.
    PMID: 25745219 DOI: 10.1007/s13197-013-1145-1
    The objectives of this study were to determine the physicochemical properties and sensory characteristics of fish sausage made with 100 % threadfin bream (Nemipterus japonicus) surimi powder (SP100), a mix of 50 % surimi powder and 50 % frozen surimi (SP50), and a control (100 % frozen surimi). No significant differences in protein content and folding test results (P > 0.05) were detected among the SP100 and SP50 samples and the control. Gel strength of SP100 was lower (P > 0.05) than that of the control. The texture profile analysis (TPA) values (hardness, cohesiveness, springiness, and chewiness) of SP100 were significantly lower (P 
    Matched MeSH terms: Emulsions
  18. Akter N, Radiman S, Mohamed F, Reza MI
    Mini Rev Med Chem, 2013 Jul;13(9):1327-39.
    PMID: 23544469
    Self-assembled nanocarriers attract increasing attention due to their wide application in various practical fields; among them, one of the most focused fields is drug delivery. Appropriate selection of surfactant is the basis for preparing a successful nanocarrier. Until now, from phospholipid to synthetic surfactants, many surfactants have been used to explore a suitable drug delivery vehicle for the complex in-vivo environment. Among all, bio surfactants are found to be more suitable due to their bio-origin, less-toxicity, biodegradability, cheaper rate and above all, their versatile molecular structures. This molecular property enables them to self assemble into fascinating structures. Moreover, binding DNA, enhancing pH sensitivity and stability allows novelty over their synthetic counterparts and phospholipid. This review paper focuses on the properties and applications of bio-nano-carriers for drug delivery. Micelle, microemulsion, and vesicle are the three nanocarriers which are discussed herein.
    Matched MeSH terms: Emulsions
  19. Noorlaila, A., Siti Aziah, A., Asmeda, R., Norizzah, A.R.
    The emulsifying properties of extracted okra (Abelmoschus esculentus L.) mucilage at different maturity indices (1, 2 and 3) were studied. The okra mucilage was prepared using water extraction method and was determined their viscosity at different temperature (10, 30, 50 and 70°C), water holding capacity (WHC), oil holding capacity (OHC), as well as their emulsion capacity (EC) and emulsion stability (ES). Results found that okra with maturity index 2 produced the highest percentage yield of mucilage (1.46%) and followed by index 1 (1.10%) and index 3 (0.31%) (p
    Matched MeSH terms: Emulsions
  20. Wan Mohamad WAF, Buckow R, Augustin M, McNaughton D
    Food Chem, 2017 Oct 15;233:197-203.
    PMID: 28530566 DOI: 10.1016/j.foodchem.2017.04.086
    Confocal Raman microscopy (CRM) was able to quantify the β-carotene concentration in oil droplets and determine the partitioning characteristics of β-carotene within the emulsion system in situ. The results were validated by a conventional method involving solvent extraction of β-carotene separately from the total emulsion as well as the aqueous phase separated by centrifugation, and quantification by absorption spectrophotometry. CRM also enabled the localization of β-carotene in an emulsion. From the Raman image, the β-carotene partitioning between the aqueous and oil phases of palm olein-in-water emulsions stabilized by whey protein isolate (WPI) was observed. Increasing the concentration of β-carotene in an emulsion (from 0.1 to 0.3g/kg emulsion) with a fixed gross composition (10% palm olein:2% WPI) decreased the concentration of β-carotene in the oil droplet. CRM is a powerful tool for in situ analyses of components in heterogeneous systems such as emulsions.
    Matched MeSH terms: Emulsions
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links