In paddy cultivation, harvesting is the most important operation, which needs suitable machinery. Thus, this study was carried out to compare field performances and energy and environmental effect between the conventional 5 m cutting width NEW HOLLAND CLAYSON 8080, 82 kW@2500 rpm combine harvester running on a total net area of 42.78 ha of plots for two rice (Oryza sativa L.) cultivation seasons and the new mid-size 2.7 m cutting width WORLD STAR WS7.0, 76 kW@2600 rpm combine harvester running on a total net area of 16.95 ha of plots for two rice cultivation seasons. The conventional combine as compared to mid-size combine showed 14.4% greater mean fuel consumptions (21.13 versus 18.46 l/ha), 31.1% greater mean effective field capacity (0.69 versus 0.53 ha/h), 5.23% greater cornering time (turning time) percentage of total time (8.28% versus 3.05%) and 1.41% greater reversing time percentage of total time (7.2% versus 5.79%) but 20.90% lesser mean operational speed (3.24 versus 4.10 km/h), 11.69% lesser effective time percentage of total time (60.0%versus 71.69%h/ha), 10.8% lesser mean field efficiency (64.3% versus 72.1%). In terms of total energy use the conventional combine showed 24.64% greater mean total energy use in the harvesting operation (1445.81 versus 1160.00 MJ/ha), 14.46% greater mean fuel energy (1010.014 versus 882.39 MJ/ha), 56.47% greater mean machinery energy (431.32 versus 275.65 MJ/ha) and 59.25% greater mean human energy (3.48 and 2.18 MJ/ha), this cause 26.12% greater mean total Green House Gas emission (GHG) than the mid-size combine. The results revealed that the mid-size combine is more suitable in conducting the harvest operation in rice field in Malaysia than the conventional combine.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.