Affiliations 

  • 1 Department of Chemical Engineering, Curtin University, Sarawak 98009, Malaysia
  • 2 Department of Chemical Engineering, University of Tennessee Chattanooga, Tennessee 37403. Electronic address: michael-danquah@utc.edu
  • 3 Fluid Dynamics of Complex Biosystems, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
J Pharm Sci, 2019 09;108(9):2934-2941.
PMID: 31002808 DOI: 10.1016/j.xphs.2019.03.037

Abstract

Efficient delivery of adequate active ingredients to targeted malignant cells is critical, attributing to recurrent biophysical and biochemical challenges associated with conventional pharmaceutical delivery systems. These challenges include drug leakage, low targeting capability, high systemic cytotoxicity, and poor pharmacokinetics and pharmacodynamics. Targeted delivery system is a promising development to deliver sufficient amounts of drug molecules to target cells in a controlled release pattern mode. Aptameric ligands possess unique affinity targeting capabilities which can be exploited in the design of high pay-load drug formulations to navigate active molecules to the malignant sites. This study focuses on the development of a copolymeric and multifunctional drug-loaded aptamer-conjugated poly(lactide-co-glycolic acid)-polyethylenimine (PLGA-PEI) (DPAP) delivery system, via a layer-by-layer synthesis method, using a water-in-oil-in-water double emulsion approach. The binding characteristics, targeting capability, biophysical properties, encapsulation efficiency, and drug release profile of the DPAP system were investigated under varying conditions of ionic strength, polymer composition and molecular weight (MW), and degree of PEGylation of the synthetic core. Experimental results showed increased drug release rate with increasing buffer ionic strength. DPAP particulate system obtained the highest drug release of 50% at day 9 at 1 M NaCl ionic strength. DPAP formulation, using PLGA 65:35 and PEI MW of ∼800 Da, demonstrated an encapsulation efficiency of 78.93%, and a loading capacity of 0.1605 mg bovine serum albumin per mg PLGA. DPAP (PLGA 65:35, PEI MW∼25 kDa) formulation showed a high release rate with a biphasic release profile. Experimental data depicted a lower targeting power and reduced drug release rate for the PEGylated DPAP formulations. The outcomes from the present study lay the foundation to optimize the performance of DPAP system as an effective synthetic drug carrier for targeted delivery.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.