Affiliations 

  • 1 Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
  • 2 Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
  • 3 State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
  • 4 Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia
Mol Plant Microbe Interact, 2020 Mar;33(3):488-498.
PMID: 31710580 DOI: 10.1094/MPMI-09-19-0264-R

Abstract

Phenazine-1-carboxylic acid (PCA) is the primary active component in the newly registered, commercial biopesticide Shenqinmycin and is produced during fermentation by the engineered rhizobacterium strain Pseudomonas PA1201. Both phz1 and phz2 gene clusters contribute to PCA biosynthesis. In this study, we evaluated the role of OxyR in the regulation of PCA biosynthesis in PA1201. We first showed a functional link between oxyR expression and PCA biosynthesis. Deletion of oxyR and overexpression of oxyR both increase PCA biosynthesis. The molecular mechanisms underlying OxyR regulation of PCA production were investigated using several approaches. OxyR acts divergently in phz1 and phz2. Overexpression of oxyR activated the expression of phz1 and phz1-dependent PCA production. However, overexpression of oxyR had little effect on phz2-dependent PCA biosynthesis, while deletion of oxyR promoted phz2-dependent PCA production and exerted a negative effect on phz2 expression. Further, OxyR directly bound to the phz2 promoter region. In addition, the regulation of PCA biosynthesis by OxyR was associated with quorum sensing (QS) systems. Overexpression of OxyR positively regulated pqs QS system. Finally, transcriptomic analysis and subsequent genetic analysis revealed the small RNA phrS plays a key role in OxyR-dependent PCA accumulation. Specifically, OxyR directly binds to the phrS promoter region to positively regulate phrS expression wherein PhrS regulates the PCA positive regulator MvfR in order to control PCA biosynthesis.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.