• 1 Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, 57000, Malaysia
  • 2 UWA Dental School, University of Western Australia, Nedlands, WA, 6009, Australia. Electronic address:
Dent Mater, 2020 03;36(3):456-467.
PMID: 32008748 DOI: 10.1016/


OBJECTIVE: The aim is to investigate the potential significance of combining minimally invasive high-intensity focused ultrasound (HIFU) with hydroxyapatite (HA) nanorods treatment for the remineralization of demineralized coronal dentine-matrix.

METHODS: HA having nanorods structure were synthetized using ultrasonication with precipitation method. HA nanorods were characterized by TEM for average-size/shape. Following phosphoric acid demineralization, dentine specimens were treated with HA-nanorods with/without subsequent HIFU exposure for 5 s, 10 s and 20 s then stored in artificial saliva for 1-month. Dentine specimens were characterized using different SEM and Raman spectroscopic techniques. In addition, the biochemical stability and HA-nanorods were examined using ATR-FTIR to observe attachment of nanoparticles. Also, surface nanoindentation properties were evaluated using AFM in tapping-mode.

RESULTS: HA-nanorods displayed well-defined, homogenous plate-like nanostructure. TEM revealed intact collagen-fibrils network structure with high density due to obliteration of interfibrillar spaces with clear evidence of remineralization in combined HA/HIFU treatment. With HA-nanorods treatment collagen-network structure was visible, consisting of fibrils interlaced into a compact pattern with evidence of minerals deposition. AFM investigation revealed clear mineral formation with the increase of HIFU exposure time. Bands associated with inorganic phase dominate well in HIFU exposed specimens with PO stretching within dentine mineral identified at 960 cm-1. Characteristic dentine structure for control and HIFU 20 s specimens is reflected as oscillatory mean Amide-I intensity with measurement giving a precise sinusoidal response of polarization angle β within dentinal tissue. Nanoindentation testing showed a gradual significant increase in elastic-modulus with the increase in HIFU exposure time after 1-month storage. FTIR spectrum of the HIFU exposed dentine displayed bands at 1650 cm-1, 1580 cm-1 and 1510 cm-1 that can be attributed to Amide-I, II and III.

SIGNIFICANCE: The synergetic effect of HIFU exposure on remineralization potential of demineralized dentine-matrix following nano-hydroxyapatite treatment was revealed. This synergetic effect is dependent on HIFU exposure time.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.