Affiliations 

  • 1 Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • 2 Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. ar_muhaimin@upm.edu.my
Sci Rep, 2020 04 20;10(1):6613.
PMID: 32313095 DOI: 10.1038/s41598-020-62815-0

Abstract

Phytoremediation is one of the environmental-friendly and cost-effective systems for the treatment of wastewater, including industrial wastewater such as palm oil mill effluent final discharge (POME FD). However, the effects of the wastewater on the phytoremediator plants, in term of growth performance, lignocellulosic composition, and the presence of nutrients and heavy metals in the plants are not yet well studied. In the present work, we demonstrated that POME FD increased the growth of P. purpureum. The height increment of P. purpureum supplied with POME FD (treatment) was 61.72% as compared to those supplied with rain water (control) which was 14.42%. For lignocellulosic composition, the cellulose percentages were 38.77 ± 0.29% (treatment) and 34.16 ± 1.01% (control), and the difference was significant. These results indicated that POME FD could be a source of plant nutrients, which P. purpureum can absorb for growth. It was also found that the heavy metals (Al, As, Cd, Co, Cr, Ni and Pb) inside the plant were below the standard limit of the World Health Organization (WHO). Since POME FD was shown to have no adverse effects on P. purpureum, further research regarding the potential application of P. purpureum following phytoremediation of POME FD such as biofuel production is warranted to evaluate its potential use to fit into the waste-to-wealth agenda.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.