Affiliations 

  • 1 School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia E-mail: chsclow@usm.my
Water Sci Technol, 2020 Dec;82(12):2948-2961.
PMID: 33341784 DOI: 10.2166/wst.2020.528

Abstract

Membrane distillation (MD) is an advantageous separation process compared with pressure-driven technologies and was subsequently introduced to treat aquaculture wastewater. Harnessing a superhydrophobic membrane in an MD process is of extreme importance to prevent membrane wetting. In this work, the electrospun polypropylene (PP) membrane was surface modified by depositing an additional coating of PP via the solvent-exchange method, thereby improving the membrane's superhydrophobicity. Layer-by-layer deposition of PP caused the formation of uniform polymer spherulites on the membrane surface, which levelled up the membrane's surface roughness. A superhydrophobic surface was achieved by applying a single-layered PP coating, with static water contact angle of 152.2° and sliding angle of 12.5°. While all membranes achieved almost perfect salt rejection (up to 99.99%), the MD permeate flux improved by 30%, average of 13.0 kg/m2h, when the single-layered PP-coated membrane was used to treat the high salinity water in both 2 and 60 hr MD processes. Further layers of coating resulted in larger size of PP spherulites with higher sliding angle, followed by lowered flux in MD. The evenness of the surface coating and the size of the aggregate PP spherulites (nano-scaled) are two predominant factors contributing to the superhydrophobicity character of a membrane.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.