Displaying publications 1 - 20 of 67 in total

  1. Jhatial AA, Goh WI, Mastoi AK, Traore AF, Oad M
    Environ Sci Pollut Res Int, 2022 Jan;29(2):2985-3007.
    PMID: 34383212 DOI: 10.1007/s11356-021-15076-x
    Rapid urbanization and 'concretization' have increased the use of concrete as the preferred building material. However, the production of cement and other concrete-related activities, contribute significantly to both the carbon dioxide emissions and climate change. Agro-industrial wastes such as Palm Oil Fuel Ash (POFA) and Eggshell Powder (ESP) have been utilized in concrete as supplementary cementitious materials, to reduce the cement content, in order to minimize the carbon footprint and the environmental pollution associated with the dumping of waste. Both POFA and ESP have been utilized in ternary binder foamed concrete; however, higher content of cement replacement tends to reduce the concrete's strength significantly. Therefore, this research was conducted to study the influence of ternary binder foamed concrete, incorporating 30% POFA and 5-15% ESP by weight of the total binder, when reinforced with polypropylene (PP) fibres. Based on the results, the ternary binder foamed concrete showed better strength than the control foamed concrete due to the pozzolanic reaction and the addition of PP fibres slightly improved the strength. Furthermore, ternary binder foamed concrete can reduce up to 33.79% of the total CO2 emissions. In terms of cost, all ternary binder foamed concrete mixes reduced the overall cost of the mix. The lowest cost per 1 MPa was achieved by ternary binder foamed concrete mix which incorporated 30% POFA, 5% ESP and 0.20% PP fibres. However, the optimum S5 ternary binder foamed concrete mix, which incorporated 30% POFA, 10% ESP and 0.20% PP fibres, exhibited a cost of $3.74 per 1 MPa strength, which was $1.1 lower than the control foamed concrete. PP reinforced ternary binder foamed concrete is an eco-efficient and cost-effective concrete that can be used in numerous civil engineering applications, mitigating the environmental and the emissions generated by agro-industrial waste.
    Matched MeSH terms: Polypropylenes*
  2. Terry LM, Wee MXJ, Chew JJ, Khaerudini DS, Darsono N, Aqsha A, et al.
    Environ Res, 2023 May 01;224:115550.
    PMID: 36841526 DOI: 10.1016/j.envres.2023.115550
    Pyrolysis oil from oil palm biomass can be a sustainable alternative to fossil fuels and the precursor for synthesizing petrochemical products due to its carbon-neutral properties and low sulfur and nitrogen content. This work investigated the effect of applying mesoporous acidic catalysts, Ni-Mo/TiO2 and Ni/Al2O3, in a catalytic co-pyrolysis of oil palm trunk (OPT) and polypropylene (PP) from 500 to 700 °C. The obtained oil yields varied between 12.67 and 19.50 wt.% and 12.33-17.17 wt.% for Ni-Mo/TiO2 and Ni/Al2O3, respectively. The hydrocarbon content in oil significantly increased up to 54.07-58.18% and 37.28-68.77% after adding Ni-Mo/TiO2 and Ni/Al2O3, respectively. The phenolic compounds content was substantially reduced to 8.46-20.16% for Ni-Mo/TiO2 and 2.93-14.56% for Ni/Al2O3. Minor reduction in oxygenated compounds was noticed from catalytic co-pyrolysis, though the parametric effects of temperature and catalyst type remain unclear. The enhanced deoxygenation and cracking of phenolic and oxygenated compounds and the PP decomposition resulted in increased hydrocarbon production in oil during catalytic co-pyrolysis. Catalyst addition also promoted the isomerization and oligomerization reactions, enhancing the formation of cyclic relative to aliphatic hydrocarbon.
    Matched MeSH terms: Polypropylenes*
  3. Soni A, Das PK, Yusuf M, Pasha AA, Irshad K, Bourchak M
    Environ Sci Pollut Res Int, 2023 Dec;30(60):124566-124584.
    PMID: 35599290 DOI: 10.1007/s11356-022-20915-6
    The usage of waste for the development of sustainable building materials has received an increasing attention in socio-eco-environment spheres. The rice husk ash (RHA) produced during burning of rice husk and the ever-increasing plastic wastes are useless causing detrimental effects on the environment. This research supports the idea of sustainability and circular economy via utilization of waste to produce value-added products. This research explores the potential of waste plastics, RHA, and silica sand as thermoplastic composite materials. The different composite samples were prepared through waste plastics which includes low- and high-density polyethylene and polypropylene with incorporation of RHA and silica sand in proportions. The study investigates the effect of filler/polymer in 30/70, 20/80, and 10/90 (wt. %) on the workability of the developed composite materials. The workability of the composites was found to improve with filler reinforcement. The experimental results showed the maximum density of 1.676 g/cm3 and mechanical strength of 26.39, 4.89, and 3.25 MPa as compressive, flexural, and tensile strengths, respectively. The minimum percentage of water absorption was 0.052%. The wear tests resulted in a minimum abrasive and sliding wear rate of 0.03759 (cm3) and 0.00692 × 10-6 kg/m. The correlations between wear mechanisms and responses were morphologically analyzed. The developed composites verify the feasibility of RHA and plastics waste as a cost effective and environmentally competent product. The results and discussions provided a direction for the future research on sustainable polymeric composite materials.
    Matched MeSH terms: Polypropylenes
  4. Razak MR, Aris AZ, Sukatis FF, Zaki MRM, Zainuddin AH, Haron DEM, et al.
    J Sep Sci, 2023 Jan;46(1):e2200282.
    PMID: 36337037 DOI: 10.1002/jssc.202200282
    In toxicological analysis, the analytical validation method is important to assess the exact risk of contaminants of emerging concern in the environment. Syringe filters are mainly used to remove impurities from sample solutions. However, the loss of analyte to the syringe filter could be considerable, causing an underestimate of the analyte concentrations. The current study develops and validates simultaneous liquid chromatography-mass spectrometry analysis using a direct filtration method to detect four groups of contaminants of emerging concern. The adsorption of the analyte onto three different matrices and six types of syringe filters is reported. The lowest adsorption of analytes was observed in methanol (16.72%), followed by deionized water (48.19%) and filtered surface lake water (48.94%). Irrespective of the type of the matrices, the lowest average adsorption by the syringe filter was observed in the 0.45 μm polypropylene membrane (15.15%), followed by the 0.20 μm polypropylene membrane (16.10%), the 0.20 μm regenerated cellulose (16.15%), the 0.20 μm polytetrafluoroethylene membrane (47.38%), the 0.45 μm nylon membrane (64.87%) and the 0.20 μm nylon membrane (71.30%). In conclusion, the recommended syringe filter membranes for contaminants of emerging concern analysis are polypropylene membranes and regenerated cellulose, regardless of the matrix used.
    Matched MeSH terms: Polypropylenes*
  5. Mirjalili F, Chuah L, Salahi E
    ScientificWorldJournal, 2014;2014:718765.
    PMID: 24688421 DOI: 10.1155/2014/718765
    A nanocomposite containing polypropylene (PP) and nano α-Al2O3 particles was prepared using a Haake internal mixer. Mechanical tests, such as tensile and flexural tests, showed that mechanical properties of the composite were enhanced by addition of nano α-Al2O3 particles and dispersant agent to the polymer. Tensile strength was approximately ∼ 16% higher than pure PP by increasing the nano α-Al2O3 loading from 1 to 4 wt% into the PP matrix. The results of flexural analysis indicated that the maximum values of flexural strength and flexural modulus for nanocomposite without dispersant were 50.5 and 1954 MPa and for nanocomposite with dispersant were 55.88 MPa and 2818 MPa, respectively. However, higher concentration of nano α-Al2O3 loading resulted in reduction of those mechanical properties that could be due to agglomeration of nano α-Al2O3 particles. Transmission and scanning electron microscopic observations of the nanocomposites also showed that fracture surface became rougher by increasing the content of filler loading from 1 to 4% wt.
    Matched MeSH terms: Polypropylenes/chemistry*
  6. Bassiri Nia A, Xin L, Yahya MY, Ayob A, Farokhi Nejad A, Rahimian Koloor SS, et al.
    Polymers (Basel), 2020 Sep 19;12(9).
    PMID: 32961655 DOI: 10.3390/polym12092139
    The present study investigates the effects of close-range blast loading of fibre metal laminates (FMLs) fabricated from woven glass polypropylene and aluminium alloy 2024-T3. The polypropylene layers and anodized aluminium are stacked in 3/2 layering configuration to investigate the impact energy absorbed through deformation and damage. In order to study the blast responses of FMLs, a 4-cable instrumented pendulum blast set-up is used. Effects of blast impulse and stand-off distance were examined. Investigation of the cross-section of FMLs are presented and damages such as fibre fracture, debonding, and global deformation are examined. Increasing stand-off distance from 4 to 14 mm resulted in a change of damage mode from highly localized perforation to global deformation.
    Matched MeSH terms: Polypropylenes
  7. Ghaemi F, Abdullah LC, Tahir P
    Polymers (Basel), 2016 Nov 09;8(11).
    PMID: 30974671 DOI: 10.3390/polym8110381
    This paper focuses on the synthesis and mechanism of carbon nanospheres (CNS) coated with few- and multi-layered graphene (FLG, MLG). The graphitic carbon encapsulates the core/shell structure of the Ni/NiO nanoparticles via the chemical vapor deposition (CVD) method. The application of the resulting CNS and hybrids of CNS-FLG and CNS-MLG as reinforcement nanofillers in a polypropylene (PP) matrix were studied from the aspects of mechanical and thermal characteristics. In this research, to synthesize carbon nanostructures, nickel nitrate hexahydrate (Ni(NO₃)₂·6H₂O) and acetylene (C₂H₂) were used as the catalyst source and carbon source, respectively. Besides, the morphology, structure and graphitization of the resulting carbon nanostructures were investigated. On the other hand, the mechanisms of CNS growth and the synthesis of graphene sheets on the CNS surface were studied. Finally, the mechanical and thermal properties of the CNS/PP, CNS-FLG/PP, and CNS-MLG/PP composites were analyzed by applying tensile test and thermogravimetric analysis (TGA), respectively.
    Matched MeSH terms: Polypropylenes
  8. Semilin V, Janaun J, Chung CH, Touhami D, Haywood SK, Chong KP, et al.
    J Hazard Mater, 2021 02 15;404(Pt B):124144.
    PMID: 33212411 DOI: 10.1016/j.jhazmat.2020.124144
    Residual palm oil that goes into the river untreated can become detrimental to the environment. Residual oil discharge during milling process into palm oil mill effluent (POME) is unavoidable. About 1 wt% of residual oil in POME causes major problems to the mills, in terms of environment, wastewater treatment and economy losses. This paper reports the recovery of residual oil from POME by adsorption on polypropylene micro/nanofiber (PP-MNF) and desorption of oil by hands pressing, and oil extraction from the PP-MNF using solvent and supercritical-CO2 extraction techniques. The characterization of the PP-MNF and the quality of oil extracted were analyzed using analytical instruments. The reusability of the PP-MNF was also investigated. The experimental results showed the adsorption capacity of the PP-MNF was 28.65 g of oil/g of PP-MNF on average using refined palm oil, whilst recovery of oil from POME was 10.93 g of oil/g of PP-MNF. The extraction yield of oil from PP-MNF using hand pressing was 89.62%. The extraction of residual oil from the pressed PP-MNF showed comparable yield between solvent and supercritical CO2 techniques. The quality of recovered oil was similar with the quality of the crude oil, and no trace of polypropylene contamination was detected in the oil recovered. The PP-MNF showed no significant physical change after the extraction process. In conclusion, the PP-MNF has great potential to be used commercially in residual oil recovery from POME.
    Matched MeSH terms: Polypropylenes
  9. Shahril Anuar Bahari, Mohd Khairi Yahya, Masitah Abu Kassim, Khairul Safuan Muhammad, Rahimi Baharom
    The electrical resistivity and flexural strength of plastic composites reinforced with pineapple leaf particles (PCPLP) is presented. PCPLP were produced using different plastic materials; Polyethylene (PE) and Polypropylene (PP), and different plastic pineapple leaf particle ratios; 50:50 and 70:30. The PCPLP were tested and evaluated with respect to electrical resistivity and flexural strength according to ASTM D257 and D790, respectively. The results indicate that PCPLP made from PP exhibits better electrical resistance than PE, which may be attributed to the better frequency insulation behaviour ofPP. PCPLP using the higher ratio of 70:30 also exhibited better electrical resistance than the lower 50:50 ratio. Cellulose materials inherently influence the electrical resistance of plastic composites, due to their natural propensity to absorb moisture. The PCPLP produced using a ratio of 50:50 for both PP and PE composites exhibited better MOE results than the 70:30 composites, however the converse is true with respect to the MOR. MOE of PCPLP was increased with increasing pineapple leaf particles content due to the greater matrix stiffness of this natural particle with respect to plastic matrix. However, high percentage offiller particles in the matrix (70:30 ratio) has reduced the toughness in the composite structure due to the lost ofphysical contact between high accumulated particles.
    Matched MeSH terms: Polypropylenes
  10. Haneef INHM, Buys YF, Shaffiar NM, Abdul Hamid AM, Shaharuddin SIS, Fitriani
    J Mech Behav Biomed Mater, 2022 Nov;135:105423.
    PMID: 36087517 DOI: 10.1016/j.jmbbm.2022.105423
    The need to overcome the secondary surgery to remove implanted metal fixation plate leads to the idea of replacing the material with degradable bionanocomposite. In this research, polylactic acid/polypropylene (PLA/PPC) blends incorporated with halloysite nanotubes (HNT) (0-6 wt %) were considered as the candidate material for mandibular fixation plate. A single-factor design using Design Expert software was used to determine 20 different compositions of PLA/PPC/HNT nanocomposites and their mechanical properties were then measured. The optimization of the PLA/PPC/HNT nanocomposite composition was performed based on the nanocomposite's response to Young's modulus, tensile strength, and elongation at break. Further analysis suggested an optimum composition of 92.5/7.5 PLA/PPC with 6 wt % of HNT. The statistical results predicted that there was a 71.7% possibility that the proposed nanocomposite would have the following mechanical properties: Young's modulus of 2.18 GPa, a tensile strength of 64.16 MPa, and an elongation at break of 106.53%.
    Matched MeSH terms: Polypropylenes
  11. Harussani MM, Sapuan SM, Rashid U, Khalina A, Ilyas RA
    Sci Total Environ, 2022 Jan 10;803:149911.
    PMID: 34525745 DOI: 10.1016/j.scitotenv.2021.149911
    COVID-19 global pandemic, originated from Wuhan, resulted in a massive increase in the output of polypropylene (PP)-based personal protective equipment (PPE) for healthcare workers. The continuous demand of PPE across the world caused the PP based plastic wastes accumulation. Some alternative approaches that have been practiced apart from collecting the plastic waste in the landfills are incineration approach and open burning. However, there were many drawbacks of these practices, which promote the release of chemical additives and greenhouse gases into the environment. Therefore, a proper approach in treating the plastic wastes, which introduces conversion of plastic wastes into renewable energy is paramount. Along the way of extensive research and studies, the recovery of PP plastic to fuel-like liquid oil and solid char through thermal decomposition of pyrolysis process, helps in reducing the number of PP plastic wastes and produces good quality pyrolysis liquid oil and solid char to be used in fuel applications. This paper summarizes the pyrolysis process for massively produced PP plastic wastes, type of pyrolysis used and the main pyrolysis parameters affecting the product yields. Literature studies of pyrolysis of PP plastic and several key points to optimize solid char production for PP were thoroughly elaborated in this review paper.
    Matched MeSH terms: Polypropylenes
  12. Mohd Abdah MAA, Mohammad Azlan FN, Wong WP, Mustafa MN, Walvekar R, Khalid M
    Chemosphere, 2024 Feb;349:140973.
    PMID: 38122940 DOI: 10.1016/j.chemosphere.2023.140973
    The increasing demand for high-performance lithium-ion batteries (LIBs) has emphasized the need for affordable and sustainable materials, prompting the exploration of waste upcycling to address global sustainability challenges. In this study, we efficiently converted polypropylene (PP) plastic waste from used centrifuge tubes into activated polypropylene carbon (APC) using microwave-assisted pyrolysis. The synthesis of APC was optimized using response surface methodology/central composite design (RSM/CCD). Based on the RSM results, the optimal conditions for PP plastic conversion into carbon were determined as follows: HNO3 concentration of 3.5 M, microwave temperature of 230 °C, and holding time of 25 min. Under these conditions, the obtained intensity ratio of Id/Ig in PP carbon was 0.681 ± 0.013, with an error of 6.81 ± 0.013 % between predicted and actual values. The physicochemical studies, including FESEM-EDX, XRD, and Raman spectroscopy, confirmed the successful synthesis of APC samples. The APC 800 material exhibited a well-organized three-dimensional structure characterized by large pores and mesopores, enabling fast ion transport in the electrode. As a result, the APC 800 electrode demonstrated an initial discharge capacity of 381.0 mAh/g, an improved initial coulombic efficiency of 85.1%, and excellent cycling stability after 100 cycles. Notably, the APC 800 electrode displayed remarkable rate performance, showing a reversible capacity of 355.1 mAh/g when the current density was reset to 0.2 A/g, highlighting its high electrochemical reversibility. The outstanding characteristics of APC 800 as an anode electrode material for high-performance lithium-ion batteries suggest a promising future for its application in the field.
    Matched MeSH terms: Polypropylenes
  13. Lo TS, Lin YH, Yusoff FM, Chu HC, Hsieh WC, Uy-Patrimonio MC
    Sci Rep, 2016 12 19;6:38960.
    PMID: 27991501 DOI: 10.1038/srep38960
    Our aim is to study the inflammatory response towards the collagen-coated and non-coated polypropylene meshes in rats and the urodynamic investigation post-operatively. Forty-two female Sprague Dawley were divided into 7 groups of 6 rats; Control, Day 7 and 30 for Sham, Avaulta Plus (MPC), Perigee (MP). UDS were taken at days 7 and 30. Mesh with the vagina and bladder wall was removed and sent for immunohistochemical examination. Results showed intense inflammatory reaction on day 7 in the study groups which decreased on day 30. IL-1, TNF-α, MMP-2 and CD31 were observed to decrease from day 7 to day 30. NGF was almost normal on day 30 in all groups. UDS showed no difference in voiding pressure. Both Study and Sham groups had shorter voiding interval (VI) on day 7 but significantly lower in MPC. VI had significantly increased on day 30 in all groups. Voided volume was significantly lower in the mesh groups even when an increase was seen on day 30. In conclusion, the higher levels of IL-1, TNF-α and MMP-2 in collagen-coated polypropylene mesh imply greater inflammation than the non-coated polypropylene mesh. Mesh implantation can lead to shorter voiding interval and smaller bladder capacity.
    Matched MeSH terms: Polypropylenes*
  14. Dawood ET, Mohammad YZ, Abbas WA, Mannan MA
    Heliyon, 2018 Dec;4(12):e01103.
    PMID: 30603721 DOI: 10.1016/j.heliyon.2018.e01103
    This study has been undertaken to investigate the evaluation of Fiber-reinforced Foamed Concrete (FRFC) performance by the use of toughness and non-destructive tests. These tests cover the workability, density, static modulus of elasticity, toughness, ultrasonic pulse velocity and absorption tests. Different FRFC mixes using carbon fibers in the order of 0.5, 1 and 1.5% carbon fibers were used. Also, the combinations of carbon fibers (C) and polypropylene fibers (PP) as 1% C+ 0.5% PP, and 0.5% C+1% PP were prepared. Lastly, the inclusion of polypropylene fibers with the order of 1.5% PP was used to strengthen the foamed concrete mix. The results showed that the use of 1.5% of C has affected the modulus of elasticity and flexural toughness of foamed concrete. On the other hand, a strong relationship is found between compressive strength and ultrasonic pulse velocity for FRFC.
    Matched MeSH terms: Polypropylenes
  15. Chin JY, Teoh GH, Ahmad AL, Low SC
    Water Sci Technol, 2020 Dec;82(12):2948-2961.
    PMID: 33341784 DOI: 10.2166/wst.2020.528
    Membrane distillation (MD) is an advantageous separation process compared with pressure-driven technologies and was subsequently introduced to treat aquaculture wastewater. Harnessing a superhydrophobic membrane in an MD process is of extreme importance to prevent membrane wetting. In this work, the electrospun polypropylene (PP) membrane was surface modified by depositing an additional coating of PP via the solvent-exchange method, thereby improving the membrane's superhydrophobicity. Layer-by-layer deposition of PP caused the formation of uniform polymer spherulites on the membrane surface, which levelled up the membrane's surface roughness. A superhydrophobic surface was achieved by applying a single-layered PP coating, with static water contact angle of 152.2° and sliding angle of 12.5°. While all membranes achieved almost perfect salt rejection (up to 99.99%), the MD permeate flux improved by 30%, average of 13.0 kg/m2h, when the single-layered PP-coated membrane was used to treat the high salinity water in both 2 and 60 hr MD processes. Further layers of coating resulted in larger size of PP spherulites with higher sliding angle, followed by lowered flux in MD. The evenness of the surface coating and the size of the aggregate PP spherulites (nano-scaled) are two predominant factors contributing to the superhydrophobicity character of a membrane.
    Matched MeSH terms: Polypropylenes
  16. Jakir Hossain Khan M, Azlan Hussain M, Mujtaba IM
    Polymers (Basel), 2016 Jun 14;8(6).
    PMID: 30979325 DOI: 10.3390/polym8060220
    In this study, a novel multiphasic model for the calculation of the polypropylene production in a complicated hydrodynamic and the physiochemical environments has been formulated, confirmed and validated. This is a first research attempt that describes the development of the dual-phasic phenomena, the impact of the optimal process conditions on the production rate of polypropylene and the fluidized bed dynamic details which could be concurrently obtained after solving the model coupled with the CFD (computational fluid dynamics) model, the basic mathematical model and the moment equations. Furthermore, we have established the quantitative relationship between the operational condition and the dynamic gas⁻solid behavior in actual reaction environments. Our results state that the proposed model could be applied for generalizing the production rate of the polymer from a chemical procedure to pilot-scale chemical reaction engineering. However, it was assumed that the solids present in the bubble phase and the reactant gas present in the emulsion phase improved the multiphasic model, thus taking into account that the polymerization took place mutually in the emulsion besides the bubble phase. It was observed that with respect to the experimental extent of the superficial gas velocity and the Ziegler-Natta feed rate, the ratio of the polymer produced as compared to the overall rate of production was approximately in the range of 9%⁻11%. This is a significant amount and it should not be ignored. We also carried out the simulation studies for comparing the data of the CFD-dependent dual-phasic model, the emulsion phase model, the dynamic bubble model and the experimental results. It was noted that the improved dual-phasic model and the CFD model were able to predict more constricted and safer windows at similar conditions as compared to the experimental results. Our work is unique, as the integrated developed model is able to offer clearer ideas related to the dynamic bed parameters for the separate phases and is also capable of computing the chemical reaction rate for every phase in the reaction. Our improved mutiphasic model revealed similar dynamic behaviour as the conventional model in the initial stages of the polymerization reaction; however, it diverged as time progressed.
    Matched MeSH terms: Polypropylenes
  17. Aisyah HA, Paridah MT, Sapuan SM, Ilyas RA, Khalina A, Nurazzi NM, et al.
    Polymers (Basel), 2021 Feb 02;13(3).
    PMID: 33540731 DOI: 10.3390/polym13030471
    Over the last decade, the progressive application of natural fibres in polymer composites has had a major effect in alleviating environmental impacts. Recently, there is a growing interest in the development of green materials in a woven form by utilising natural fibres from lignocellulosic materials for many applications such as structural, non-structural composites, household utilities, automobile parts, aerospace components, flooring, and ballistic materials. Woven materials are one of the most promising materials for substituting or hybridising with synthetic polymeric materials in the production of natural fibre polymer composites (NFPCs). These woven materials are flexible, able to be tailored to the specific needs and have better mechanical properties due to their weaving structures. Seeing that the potential advantages of woven materials in the fabrication of NFPC, this paper presents a detailed review of studies related to woven materials. A variety of factors that influence the properties of the resultant woven NFRC such as yarn characteristics, fabric properties as well as manufacturing parameters were discussed. Past and current research efforts on the development of woven NFPCs from various polymer matrices including polypropylene, polylactic acid, epoxy and polyester and the properties of the resultant composites were also compiled. Last but not least, the applications, challenges, and prospects in the field also were highlighted.
    Matched MeSH terms: Polypropylenes
  18. Chin JY, Teoh GH, Ahmad AL, Low SC
    Sci Total Environ, 2021 Nov 10;794:148657.
    PMID: 34198076 DOI: 10.1016/j.scitotenv.2021.148657
    Surging growth of aquaculture industry has alarmed the public when the wastewater discharged had an adverse effect on the environment. This current study is a pioneer in the use of membrane distillation (MD) to treat real aquaculture wastewater. In addition to excellent hydrophobicity, the slippery surface of membrane used for MD is another key factor that enhances the performance of MD. The slippery surface of the membrane was tuned by layering high-viscosity and low-viscosity polypropylene (PP) polymers on the electrospun membrane by solvent-exchanged method. While the high-viscosity PP coating (PP/HV) rendered the membrane surface slippery, the low-viscosity PP coating (PP/LV) caused the fish farm wastewater to have stick-slip movement on the membrane surface. In the long-term 70-hour direct contact membrane distillation (DCMD) separation, PP/HV and PP/LV membranes can perfectly eliminate the undesirable components in the fish farm wastewater. The PP/HV membrane has registered a flux of 19.1 kg/m2·h, while the flux of PP/LV membrane was only 7.3 kg/m2·h. The PP/HV membrane also showed excellent anti-scaling properties in relative to the PP/LV membrane. This is because the PP/HV membrane promotes effortless gliding of the feed water along the surface of the membrane, while the surface of the PP/LV membrane has a static water boundary. Therefore, it can be concluded that the application of MD using the membrane coated with high-viscosity PP polymer is a feasible technology for the treatment of aquaculture wastewater.
    Matched MeSH terms: Polypropylenes
  19. Syahidah, K., Rosnah, S., Noranizan, M.A., Zaulia, O.
    Consumers today prefer to purchase ready-to-eat, fresh-cut fruit that is readily available at the markets and retailers. They generally select the fresh-cut fruit base on the quality, freshness, nutrition and safety. The effects of packaging condition on fresh-cut Cantaloupe were studied during 18 days of storage at 2°C and 87% RH. Fresh-cut Cantaloupe pieces were packed in a Polypropylene (PP) container. As a control, the container was cover with lid without film, while Sample 1 (S1) was sealed only by a 40 μm PP film and Sample 2 (S2) was sealed with a 40 μm PP film and then adding the lid cover. Changes in colour, firmness Total Soluble Solids (TSS), pH, Titratable Acidity (TA) and Total Plate Count (TPC) were evaluated over time. During storage, it was found that the firmness significantly decreased from day 0 until day in all packaging conditions. Color parameters Luminosity (L*) and Chromaticity (C) were significantly change at the significance level of 95% (p
    Matched MeSH terms: Polypropylenes
  20. Nordin, N. I. A. A., Ariffin, H., Hassan, M.A., Ibrahim, N. A., Shirai, Y., Andou, Y.
    The objective of this study was to evaluate the effects of milling methods on tensile properties of polypropylene (PP) / oil palm mesocarp fibre (OPMF) biocomposites. Two types of mills were used; Wiley mill (WM) and disc mill (DM). Ground OPMF from each milling process was examined for its particle size distribution and aspect ratio by sieve and microscopic analyses, respectively. Results showed that DM-OPMF had smaller diameter fibre with uniform particle size compared to the WM-OPMF. Surface morphology study by SEM showed that DM-OPMF had rougher surface compared to WM-OPMF. Furthermore, it was found that PP/DM-OPMF biocomposite had higher tensile strength compared to PP/WM-OPMF, with almost two-fold. Thus, it is suggested that small diameter and uniform size fibre may improve stress transfer and surface contact between the fibre and polymer matrix and cause well dispersion of filler throughout the polymer resulted in better tensile strength of PP/DM-OPMF Compared to PP/WM-OPMF biocomposite. Overall, it can be concluded that disc milling could serve as a simple and effective grinding method for improving the tensile properties of biocomposite.
    Matched MeSH terms: Polypropylenes
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links