Affiliations 

  • 1 College of Information Science and Technology, Engineering Research Center of Digitized Textile & Fashion Technology, Ministry of Education, Donghua University, Shanghai 201620, China
  • 2 School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Johor 79100, Malaysia
Sensors (Basel), 2021 Feb 02;21(3).
PMID: 33540500 DOI: 10.3390/s21030974

Abstract

The early detection of damaged (partially broken) outdoor insulators in primary distribution systems is of paramount importance for continuous electricity supply and public safety. Unmanned aerial vehicles (UAVs) present a safer, autonomous, and efficient way to examine the power system components without closing the power distribution system. In this work, a novel dataset is designed by capturing real images using UAVs and manually generated images collected to overcome the data insufficiency problem. A deep Laplacian pyramid-based super-resolution network is implemented to reconstruct high-resolution training images. To improve the visibility of low-light images, a low-light image enhancement technique is used for the robust exposure correction of the training images. A different fine-tuning strategy is implemented for fine-tuning the object detection model to increase detection accuracy for the specific faulty insulators. Several flight path strategies are proposed to overcome the shuttering effect of insulators, along with providing a less complex and time- and energy-efficient approach for capturing a video stream of the power system components. The performance of different object detection models is presented for selecting the most suitable one for fine-tuning on the specific faulty insulator dataset. For the detection of damaged insulators, our proposed method achieved an F1-score of 0.81 and 0.77 on two different datasets and presents a simple and more efficient flight strategy. Our approach is based on real aerial inspection of in-service porcelain insulators by extensive evaluation of several video sequences showing robust fault recognition and diagnostic capabilities. Our approach is demonstrated on data acquired by a drone in Swat, Pakistan.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.