Affiliations 

  • 1 Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institute, School of Resources and Civil Engineering, Suzhou University, Suzhou, 234000, Anhui, PR China; College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian province, PR China
  • 2 College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian province, PR China; China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia. Electronic address: tonni@xmu.edu.cn
  • 3 Faculty of Environment Earth Sciences, Hokkaido University, Sapporo, 060-0810, Japan
  • 4 Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institute, School of Resources and Civil Engineering, Suzhou University, Suzhou, 234000, Anhui, PR China
  • 5 Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
Chemosphere, 2021 May;271:129861.
PMID: 33736203 DOI: 10.1016/j.chemosphere.2021.129861

Abstract

This work incorporated technological values into Zn2Cr-layered double hydroxide (LDH), synthesized from unused resources, for removal of pyrophosphate (PP) in electroplating wastewater. To adopt a resource recovery for the remediation of the aquatic environment, the Zn2Cr-LDH was fabricated by co-precipitation from concentrated metals of plating waste that remained as industrial by-products from metal finishing processes. To examine its applicability for water treatment, batch experiments were conducted at optimum M2+/M3+, pH, reaction time, and temperature. To understand the adsorption mechanisms of the PP by the adsorbent, the Zn2Cr-LDH was characterized using Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analyses before and after adsorption treatment. An almost complete PP removal was attained by the Zn2Cr-LDH at optimized conditions: 50 mg/L of PP, 1 g/L of adsorbent, pH 6, and 6 h of reaction. Ion exchange controlled the PP removal by the adsorbent at acidic conditions. The PP removal well fitted a pseudo-second-order kinetics and/or the Langmuir isotherm model with 79 mg/g of PP adsorption capacity. The spent Zn2Cr-LDH was regenerated with NaOH with 86% of efficiency for the first cycle. The treated effluents could comply with the discharge limit of <1 mg/L. Overall, the use of the Zn2Cr-LDH as a low-cost adsorbent for wastewater treatment has contributed to national policy that promotes a zero-waste approach for a circular economy (CE) through a resource recovery paradigm.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.