Affiliations 

  • 1 Universiti Malaysia Terengganu
MyJurnal

Abstract

Lipases are enzyme with versatile industrial applications can be produced by the solid-state fermentation (SSF) method and is an economical alternative for enzyme production assisted by fungus. In Malaysia, 5 million of copra waste were generated annually. Large amount of copra waste produced will cause an increasing amount of the waste dumped to the landfill. Copra waste is one of the potential substrates to produce lipase enzyme through SSF. Thus, the aim of this study is to optimize the lipase production by SSF associated by Aspergillus niger using the 23 full factorial design approach. In this study the factors affecting parameters that involved in the production of lipase enzyme such as temperature (25˚ and 35˚), substrates concentration (40% and 60%) and inoculum size of Aspergillus niger (1 and 9 petri dish) were determined. The maximum production of lipase was obtained after 120-hour incubation in SSF. The optimum condition for inoculum size of Aspergillus niger was 9 plates, 30°C of incubation temperature and 60 % moisture contents. The range of the concentration of lipase enzyme produced varied from 105 U/ml to 170 U/ml. When applied to the wastewater treatment, the reducing percentage of fat, oil and grease (FOG) in food processing wastewater is reduced from 219.4925mg/l to 169.467mg/l accounted to the amount of 34 % FOG removal. Lipase produced using copra waste as a substrate using SSF has the potential value to be developed in the future for various industry including wastewater treatment industry.