Displaying publications 1 - 20 of 490 in total

  1. Aziz HA, Sobri NI
    Environ Sci Pollut Res Int, 2015 Nov;22(21):16943-50.
    PMID: 26109223 DOI: 10.1007/s11356-015-4895-7
    Malaysia is one of the highest starch producers. In this study, sago starch was utilized as a natural coagulant aid to reduce the dosage of aluminum-based coagulant in leachate treatment. The potential of native sago trunk starch (NSTS) and commercial sago starch (CSS) was evaluated as sole coagulant and coagulant aid in the presence of polyaluminum chloride (PACl) in the removal of color, suspended solids (SS), NH3-N, turbidity, chemical oxygen demand, organic UV254, Cd, and Ni. Leachate was sampled from Pulau Burung Landfill Site, one of the semi-aerobic landfills in Malaysia. The optimum dosage for PACl in the presence of NSTS or CSS as coagulant aid was reduced from 3100 to 2000 mg/L. In the presence of 2000 mg/L PACl with 6000 mg/L NSTS and 2000 mg/L PACl with 5000 mg/L CSS, the removal performance for color, SS, and turbidity are 94.7, 99.2, and 98.9%, respectively. Similar results were obtained with the use of 3100 mg/L PACl alone. Therefore, CSS and NSTS can be used as coagulant aid.
    Matched MeSH terms: Water Purification*
  2. Makhtar SNNM, Rahman MA, Ismail AF, Othman MHD, Jaafar J
    Environ Sci Pollut Res Int, 2017 Jul;24(19):15918-15928.
    PMID: 28589281 DOI: 10.1007/s11356-017-9405-7
    This work discusses the preparation and characterizations of glass hollow fiber membranes prepared using zeolite-5A as a starting material. Zeolite was formed into a hollow fiber configuration using the phase inversion technique. It was later sintered at high temperatures to burn off organic materials and change the zeolite into glass membrane. A preliminary study, that used thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier transform infrared (FTIR), confirmed that zeolite used in this study changed to glass at temperatures above 1000 °C. The glass hollow fiber membranes prepared using the phase inversion technique has three different microstructures, namely (i) sandwich-like structure that originates from inner layer, (ii) sandwich-like that originates from outer layer, and (iii) symmetric sponge like. These variations were influenced by zeolite weight loading and the flow rate of water used to form the lumen. The separation performances of the glass hollow fiber membrane were studied using the pure water permeability and the rejection test of bovine serum albumin (BSA). The glass hollow fiber membrane prepared from using 48 wt% zeolite loading and bore fluid with 9 mL min(-1) flow rate has the highest BSA rejection of 85% with the water permeability of 0.7 L m(-2) h(-1) bar(-1). The results showed that the separation performance of glass hollow fiber membranes was in the ultrafiltration range, enabled the retention of solutes with molecular sizes larger than 67 kDa such as milk proteins, endotoxin pyrogen, virus, and colloidal silica.
    Matched MeSH terms: Water Purification*
  3. Ashraf A, Liu G, Yousaf B, Arif M, Ahmed R, Irshad S, et al.
    Sci Total Environ, 2021 Jun 10;772:145389.
    PMID: 33578171 DOI: 10.1016/j.scitotenv.2021.145389
    Wide spread documentation of antibiotic pollution is becoming a threat to aquatic environment. Erythromycin (ERY), a macrolide belonging antibiotic is at the top of this list with its concentrations ranging between ng/L to a few μg/L in various global waterbodies giving rise to ERY-resistance genes (ERY-RGs) and ERY- resistance bacteria (ERY-RBs) posing serious threat to the aquatic organisms. ERY seems resistant to various conventional water treatments, remained intact and even increased in terms of mass loads after treatment. Enhanced oxidation potential, wide pH range, elevated selectivity, adaptability and greater efficiency makes advance oxidation processes (AOPs) top priority for degrading pollutants with aromatic rings and unsaturated bonds like ERY. In this manuscript, recent developments in AOPs for ERY degradation are reported along with the factors that affect the degradation mechanism. ERY, marked as a risk prioritized macrolide antibiotic by 2015 released European Union watch list, most probably due to its protein inhibition capability considered third most widely used antibiotic. The current review provides a complete ERY overview including the environmental entry sources, concentration in global waters, ERY status in STPs, as well as factors affecting their functionality. Along with that this study presents complete outlook regarding ERY-RGs and provides an in depth detail regarding ERY's potential threats to aquatic biota. This study helps in figuring out the best possible strategy to tackle antibiotic pollution keeping ERY as a model antibiotic because of extreme toxicity records.
    Matched MeSH terms: Water Purification*
  4. Fu D, Kurniawan TA, Lin L, Li Y, Avtar R, Dzarfan Othman MH, et al.
    J Environ Manage, 2021 May 15;286:112246.
    PMID: 33667817 DOI: 10.1016/j.jenvman.2021.112246
    This study tested the technical feasibility of pyrite and/or persulfate oxidation system for arsenic (As) removal from aqueous solutions. The effects of persulfate on As removal by the pyrite in the integrated treatment were also investigated. Prior to the persulfate addition into the reaction system, the physico-chemical interactions between As and the pyrite alone in aqueous solutions were explored in batch studies. The adsorption mechanisms of As by the adsorbent were also presented. At the same As concentration of 5 mg/L, it was found that As(III) attained a longer equilibrium time (8 h) than As(V) (2 h), while the pyrite worked effectively at pH ranging from 6 to 11. At optimum conditions (0.25 g/L of pyrite, pH 8.0 and 5 mg/L of As(III) concentration), the addition of persulfate (0.5 mM) into the reaction promoted a complete removal of arsenic from the solutions. Consequently, this enabled the treated effluents to meet the arsenic maximum contaminant limit (MCL) of <10 μg/L according to the World Health Organization (WHO)'s requirements. The redox mechanisms, which involved electron transfer from the S22- of the pyrite to Fe3+, supply Fe2+ for persulfate decomposition, oxidizing As(III) to As(V). The sulfur species played roles in the redox cycle of the Fe3+/Fe2+ of the pyrite by giving its electrons, while the As(III) oxidation to As(V) was attributed to the pyrite. Overall, this work reveals the applicability of the pyrite as an adsorbent for water treatment and the importance of persulfate addition to promote a complete As removal from aqueous solutions.
    Matched MeSH terms: Water Purification*
  5. Kurniawan TA, Singh D, Xue W, Avtar R, Othman MHD, Hwang GH, et al.
    J Environ Manage, 2021 Jun 01;287:112265.
    PMID: 33730674 DOI: 10.1016/j.jenvman.2021.112265
    This study investigated the feasibility of integrated ammonium stripping and/or coconut shell waste-based activated carbon (CSWAC) adsorption in treating leachate samples. To valorize unused biomass for water treatment application, the adsorbent originated from coconut shell waste. To enhance its performance for target pollutants, the adsorbent was pretreated with ozone and NaOH. The effects of pH, temperature, and airflow rate on the removal of ammoniacal nitrogen (NH3-N) and refractory pollutants were studied during stripping alone. The removal performances of refractory compounds in this study were compared to those of other treatments previously reported. To contribute new knowledge to the field of study, perspectives on nutrients removal and recovery like phosphorus and nitrogen are presented. It was found that the ammonium stripping and adsorption treatment using the ozonated CSWAC attained an almost complete removal (99%) of NH3-N and 90% of COD with initial NH3-N and COD concentrations of 2500 mg/L and 20,000 mg/L, respectively, at optimized conditions. With the COD of treated effluents higher than 200 mg/L, the combined treatments were not satisfactory enough to remove target refractory compounds. Therefore, further biological processes are required to complete their biodegradation to meet the effluent limit set by environmental legislation. As this work has contributed to resource recovery as the driving force of landfill management, it is important to note the investment and operational expenses, engineering applicability of the technologies, and their environmental concerns and benefits. If properly managed, nutrient recovery from waste streams offers environmental and socio-economic benefits that would improve public health and create jobs for the local community.
    Matched MeSH terms: Water Purification*
  6. Sher F, Hanif K, Rafey A, Khalid U, Zafar A, Ameen M, et al.
    J Environ Manage, 2021 Jan 15;278(Pt 2):111302.
    PMID: 33152547 DOI: 10.1016/j.jenvman.2020.111302
    The water reservoirs are getting polluted due to increasing amounts of micropollutants such as pharmaceuticals, organic polymers and suspended solids. Powdered activated carbon (PAC) has been proved to be a promising solution for the purification of water without having harmful impacts on the environment. Parameters such as PAC dosing, wastewater hardness, the effect of coagulant and flocculant were evaluated in a batch scale study. These parameters were further applied on a pilot plant scale for the performance evaluation of PAC based removal of micropollutants concerning the contact time and PAC dosing with main focus on recirculation of PAC sludge. The obtained optimum dose was 10-20 mg/L providing 84.40-91.30% removal efficiency of suspended solid micropollutants (MPs) and this efficiency increased to 88.90-93.00% along with coagulant which further raised by the addition of polymer and recirculation process at batch scale. On pilot plant scale, the concentration in contact reactor and PAC removal effectiveness of dissolved air flotation, lamella separator and sedimentation tank were compared. Constant optimisation resulted in a concentration ranging from 2.70 to 3.40 g/L at dosing of PAC 10 mg/L, coagulant 2.00 mg/L and polymer 0.50 mg/L. PAC doses of 10-20 mg/L with 15-30 min contact time proved best for above 70-80% elimination. The recirculation system has also proved an efficient technique because the PAC's adsorption capacity was practically completely used. Small PAC dosages yielded high micropollutants elimination.
    Matched MeSH terms: Water Purification*
  7. Aziz NIHA, Hanafiah MM
    Environ Pollut, 2021 Jan 01;268(Pt B):115948.
    PMID: 33187839 DOI: 10.1016/j.envpol.2020.115948
    The sustainability performance of the desalination processes has received increasing attention in recent years. In this study, the current progress and future perspective of a life cycle assessment (LCA) of desalination technology in 62 previous studies have been reviewed for the period 2004-2019. It was found that the number of LCA studies related to seawater reverse osmosis has gained popularity compared to other types of desalination technologies. The review emphasized the application of LCA to desalination by means of research objective, scope of study, life stages, and impact assessment. Although previous LCA studies were conducted to assess the environmental performance of the desalination technology, little attention was given to evaluating the impact of other sustainability aspects (i.e., economic and social). The latter part of this study discusses the challenges, feasibility, and recommendations for future LCA studies on desalination technology. The integration of the LCA approach with other approaches allows a comprehensive assessment of the sustainability performance of desalination technology. Thus, the combined approaches should be explored in future studies to gain insight into the sensitivity and uncertainty of the data to make an assessment that can be useful in policy-making.
    Matched MeSH terms: Water Purification*
  8. Krishnan S, Zulkapli NS, Din MFM, Majid ZA, Honda M, Ichikawa Y, et al.
    J Environ Manage, 2020 Feb 01;255:109890.
    PMID: 31790869 DOI: 10.1016/j.jenvman.2019.109890
    Water treatment plants generate vast amounts of sludge and its disposal is one of the most expensive and environmentally problematic challenges worldwide. As sludge from water treatment plants contains a considerable amount of titanium, both can create serious environmental concerns. In this study, the potential to recover titanium from drinking water treatment residue was explored through acid leaching technique. Statistical design for the optimization of titanium recovery was proposed using response surface methodology (RSM) based on a five-level central composite design (CCD). Three independent variables were investigated, namely the acid concentration (3 M-7 M), temperature (40 °C - 80 °C) and solid/liquid ratio (0.005-0.02 g/mL). According to the analysis of variance (ANOVA), the p-value (<0.0001) indicated the designed model was highly significant. Optimization using RSM gave the best fit between validated and predicted data as elucidated by the coefficient of determination with R2 values of 0.9965. However, acid concentration and solid/liquid ratio showed an initial increase in titanium recovery followed by recovery reduction with increasing concentration and ratio. Quadratic RSM predicted the maximum recovery of titanium to be 67.73% at optimal conditions of 5.5 M acid concentration, at a temperature of 62 °C with a solid/liquid ratio of 0.01 g/mL. The verification experiments gave an average of 66.23% recovery of titanium, thus indicating that the successfully developed model to predict the response. This process development has significant importance to reduce the cost of waste disposal, environmental protection, and recovery of economically valuable products.
    Matched MeSH terms: Water Purification*
  9. Baneshi MM, Ghaedi AM, Vafaei A, Emadzadeh D, Lau WJ, Marioryad H, et al.
    Environ Res, 2020 04;183:109278.
    PMID: 32311912 DOI: 10.1016/j.envres.2020.109278
    The water sources contaminated by toxic dyes would pose a serious problem for public health. In view of this, the development of a simple yet effective method for removing dyes from industrial effluent has attracted interest from researchers. In the present work, flat sheet mixed matrix membranes (MMMs) with different physiochemical properties were fabricated by blending P84 polyimide with different concentrations of cadmium-based metal organic frameworks (MOF-2(Cd)). The resultant membranes were then used for simultaneous removal of eosin y (EY), sunset yellow (SY) and methylene blue (MB) under various process conditions. The findings indicated that the membranes could achieve high water permeability (117.8-171.4 L/m2.h.bar) and promising rejection for simultaneous dyes removal, recording value of 99.9%, 81.2% and 68.4% for MB, EY and SY, respectively. When 0.2 wt% MOF-2(Cd) was incorporated into the membrane matrix, the membrane separation efficiency was improved by 110.2% and 213.3% for EY and SY removal, respectively when compared with the pristine membrane. In addition, the optimization and modeling of membrane permeate flux and dye rejection was explored using response surface methodology. The actual and model results are in good agreement with R2 of at least 0.9983 for dye rejection and permeate flux. The high flux of the developed MMMs coupled with effective separation of dyes suggests a promising prospect of using P84 polyimide MMMs incorporated with MOF-2(Cd) for water purification.
    Matched MeSH terms: Water Purification*
  10. Thakur AK, Sathyamurthy R, Velraj R, Lynch I, Saidur R, Pandey AK, et al.
    J Environ Manage, 2021 Jul 15;290:112668.
    PMID: 33895445 DOI: 10.1016/j.jenvman.2021.112668
    The SARS-CoV-2 virus has spread globally and has severely impacted public health and the economy. Hand hygiene, social distancing, and the usage of personal protective equipment are considered the most vital tools in controlling the primary transmission of the virus. Converging evidence indicated the presence of SARS-CoV-2 in wastewater and its persistence over several days, which may create secondary transmission of the virus via waterborne and wastewater pathways. Although, researchers have started focusing on this mode of virus transmission, limited knowledge and societal unawareness of the transmission through wastewater may lead to significant increases in the number of positive cases. To emphasize the severe issue of virus transmission through wastewater and create societal awareness, we present a state of the art critical review on transmission of SARS-CoV-2 in wastewater and the potential remedial strategies to effectively control the viral spread and safeguard society. For low-income countries with high population densities, it is suggested to identify the virus in large scale municipal wastewater plants before following up with one-to-one testing for effective control of the secondary transmission. Ultrafiltration is an effective method for wastewater treatment and usually more than 4 logs of virus removal are achieved while safeguarding good protein permeability. Decentralized wastewater treatment facilities using solar-assisted disinfestation methods are most economical and can be effectively used in hospitals, isolation wards, and medical centers for reducing the risk of transmission from high local concentration sites, especially in tropical countries with abundant solar energy. Disinfection with chlorine, sodium hypochlorite, benzalkonium chloride, and peracetic acid have shown potential in terms of virucidal properties. Biological wastewater treatment using micro-algae will be highly effective in removal of virus and can be incorporated into membrane bio-reaction to achieve excellent virus removal rate. Though promising results have been shown by initial research for inactivation of SARS-CoV-2 in wastewater using physical, chemical and biological based treatment methods, there is a pressing need for extensive investigation of COVID-19 specific disinfectants with appropriate concentrations, their environmental implications, and regular monitoring of transmission. Effective wastewater treatment methods with high virus removal capacity and low treatment costs should be selected to control the virus spread and safeguard society from this deadly virus.
    Matched MeSH terms: Water Purification*
  11. Kurniawan SB, Ahmad A, Said NSM, Imron MF, Abdullah SRS, Othman AR, et al.
    Sci Total Environ, 2021 Oct 10;790:148219.
    PMID: 34380263 DOI: 10.1016/j.scitotenv.2021.148219
    Macrophytes have been widely used as agents in wastewater treatment. The involvement of plants in wastewater treatment cannot be separated from wetland utilization. As one of the green technologies in wastewater treatment plants, wetland exhibits a great performance, especially in removing nutrients from wastewater before the final discharge. It involves the use of plants and consequently produces plant biomasses as treatment byproducts. The produced plant biomasses can be utilized or converted into several valuable compounds, but related information is still limited and scattered. This review summarizes wastewater's nutrient content (macro and micronutrient) that can support plant growth and the performance of constructed wetland (CW) in performing nutrient uptake by using macrophytes as treatment agents. This paper further discusses the potential of the utilization of the produced plant biomasses as bioenergy production materials, including bioethanol, biohydrogen, biogas, and biodiesel. This paper also highlights the conversion of plant biomasses into animal feed, biochar, adsorbent, and fertilizer, which may support clean production and circular economy efforts. The presented review aims to emphasize and explore the utilization of plant biomasses and their conversion into valuable products, which may solve problems related to plant biomass handling during the adoption of CW in wastewater treatment plants.
    Matched MeSH terms: Water Purification*
  12. S E, G A, A F I, P S G, Y LT
    Environ Res, 2021 06;197:111177.
    PMID: 33864792 DOI: 10.1016/j.envres.2021.111177
    Membrane technology, especially nanofiltration (NF) has great attention to provide an imperative solution for water issues. The membrane is considered to be the heart in the separation plant. Understanding the membrane characteristics could allow predicting and optimizing the membrane performance namely flux, rejection and reduced fouling. The membrane development using biomaterials and nanomaterials provides a remarkable opportunity in the water application. This review focuses on the membrane characteristics of biomaterials and nanomaterials based nanofiltration. In this review, recent researches based on biomaterials and nanomaterials loaded membrane for salt rejection have been analyzed. Membrane fouling depends on the membrane characteristics and this review defined fouling as a ubiquitous bottleneck challenge that hampers the NF blooming applications. Fouling mitigation strategies via membrane modification using biomaterial (chitosan, curcumin and vanillin) and various other nanomaterials are critically reviewed. This review also highlights the membrane cleaning and focuses on concentrates disposal methods with zero liquid discharge system for resource recovery. Finally, the conclusion and future prospects of membrane technology are discussed. From this current review, it is apparent that the biomaterial and various other nanomaterials acquire exclusive properties that facilitate membrane advancement with improved capability for water treatment. Regardless of membrane material developments, still exist considerable difficulties in membrane commercialization. Thus, additional studies related to this field are needed to produce membranes with better performance for large‒scale applications.
    Matched MeSH terms: Water Purification*
  13. Zhang C, Hasunuma T, Shiung Lam S, Kondo A, Ho SH
    Bioresour Technol, 2021 Nov;340:125638.
    PMID: 34358989 DOI: 10.1016/j.biortech.2021.125638
    Mariculture wastewater has drawn growing attention due to associated threats for coastal environment. However, most biological techniques exhibit unfavorable performance due to saline inhibition. Furthermore, only NaCl was used in most studies causing clumsy evaluation, undermining the potential of microalgal mariculture wastewater treatment. Herein, various concentrations of NaCl and sea salt are comprehensively examined and compared for their efficiencies of mariculture wastewater treatment and biodiesel conversion. The results indicate sea salt is a better trigger for treating wastewater (nearly 100% total nitrogen and total phosphorus removal) and producing high-quality biodiesel (330 mg/L•d). Structure equation model (SEM) further demonstrates the correlation of wastewater treatment performance and microalgal status is gradually weakened with increment of sea salt concentrations. Furthermore, metabolic analysis reveals enhanced photosynthesis might be the pivotal motivator for preferable outcomes under sea salt stimulation. This study provides new insights into microalgae-based approach integrating mariculture wastewater treatment and biodiesel production.
    Matched MeSH terms: Water Purification*
  14. Joseph J, Iftekhar S, Srivastava V, Fallah Z, Zare EN, Sillanpää M
    Chemosphere, 2021 Dec;284:131171.
    PMID: 34198064 DOI: 10.1016/j.chemosphere.2021.131171
    Water is a supreme requirement for the existence of life, the contamination from the point and non-point sources are creating a great threat to the water ecosystem. Advance tools and techniques are required to restore the water quality and metal-organic framework (MOFs) with a tunable porous structure, striking physical and chemical properties are an excellent candidate for it. Fe-based MOFs, which developed rapidly in recent years, are foreseen as most promising to overcome the disadvantages of traditional water depolluting practices. Fe-MOFs with low toxicity and preferable stability possess excellent performance potential for almost all water remedying techniques in contrast to other MOF structures, especially visible light photocatalysis, Fenton, and Fenton-like heterogeneous catalysis. Fe-MOFs become essential tool for water treatment due to their high catalytic activity, abundant active site and pollutant-specific adsorption. However, the structural degradation under external chemical, photolytic, mechanical, and thermal stimuli is impeding Fe-MOFs from further improvement in activity and their commercialization. Understanding the shortcomings of structural integrity is crucial for large-scale synthesis and commercial implementation of Fe-MOFs-based water treatment techniques. Herein we summarize the synthesis, structure and recent advancements in water remediation methods using Fe-MOFs in particular more attention is paid for adsorption, heterogeneous catalysis and photocatalysis with clear insight into the mechanisms involved. For ease of analysis, the pollutants have been classified into two major classes; inorganic pollutants and organic pollutants. In this review, we present for the first time a detailed insight into the challenges in employing Fe-MOFs for water remediation due to structural instability.
    Matched MeSH terms: Water Purification*
  15. Foo DC
    J Environ Manage, 2008 Jul;88(2):253-74.
    PMID: 17433530
    Water reuse/recycle has gained much attention in recent years for environmental sustainability reasons, as well as the rising costs of fresh water and effluent treatment. Process integration techniques for the synthesis of water network have been widely accepted as a promising tool to reduce fresh water and wastewater flowrates via in-plant water reuse/recycle. To date, the focus in this area has been on water network synthesis problems, with little attention dedicated to the rare but realistic cases of so-called threshold problems. In this work, targeting for threshold problems in a water network is addressed using the recently developed numerical tool of water cascade analysis (WCA). Targeting for plant-wide integration is then addressed. By sending water sources across different geographical zones in plant-wide integration, the overall fresh water and wastewater flowrates are reduced simultaneously.
    Matched MeSH terms: Water Purification/instrumentation*; Water Purification/methods
  16. Salehmin MNI, Lim SS, Satar I, Daud WRW
    Sci Total Environ, 2021 Mar 10;759:143485.
    PMID: 33279184 DOI: 10.1016/j.scitotenv.2020.143485
    Microbial desalination cells (MDCs) have been experimentally proven as a versatile bioelectrochemical system (BES). They have the potential to alleviate environmental pollution, reduce water scarcity and save energy and operational costs. However, MDCs alone are inadequate to realise a complete wastewater and desalination treatment at a high-efficiency performance. The assembly of identical MDC units that hydraulically and electrically connected can improve the performance better than standalone MDCs. In the same manner, the coupling of MDCs with other BES or conventional water reclamation technology has also exhibits a promising performance. However, the scaling-up effort has been slowly progressing, leading to a lack of knowledge for guiding MDC technology into practicality. Many challenges remain unsolved and should be mitigated before MDCs can be fully implemented in real applications. Here, we aim to provide a comprehensive chronological-based review that covers technological limitations and mitigation strategies, which have been developed for standalone MDCs. We extend our discussion on how assembled, coupled and scaled-up MDCs have improved in comparison with standalone and lab-scale MDC systems. This review also outlines the prevailing challenges and potential mitigation strategies for scaling-up based on large-scale specifications and evaluates the prospects of selected MDC systems to be integrated with conventional anaerobic digestion (AD) and reverse osmosis (RO). This review offers several recommendations to promote up-scaling studies guided by the pilot scale BES and existing water reclamation technologies.
    Matched MeSH terms: Water Purification*
  17. Rahmawati R, Bilad MR, Laziz AM, Nordin NAHM, Jusoh N, Putra ZA, et al.
    J Environ Manage, 2019 Nov 01;249:109359.
    PMID: 31404857 DOI: 10.1016/j.jenvman.2019.109359
    Membrane based technologies are highly reliable for water and wastewater treatment, including for removal of total oil and grease from produced water. However, performances of the pressure driven processes are highly restricted by membrane fouling and the application of traditional air bubbling system is limited by their low shear stress due to poor contacts with the membrane surface. This study develops and assesses a novel finned spacer, placed in between vertical panel, for membrane fouling control in submerged plate-and-frame module system for real produced water filtration. Results show that permeability of the panel is enhanced by 87% from 201 to 381 L/(m2 h bar). The spacer system can be operated in switching mode to accommodate two-sided panel aeration. This leads to panel permeability increment by 22% higher than the conventional vertical system. The mechanisms of finned spacer in encouraging the flow trajectory was proven by visual observation and flow simulation. The fins alter the air bubbles flow trajectory toward the membrane surface to effectively scour-off the foulant. Overall results demonstrate the efficacy of the developed spacer in projecting the air bubble trajectory toward the membrane surface and thus significantly enhances membrane panel productivity.
    Matched MeSH terms: Water Purification*
  18. Islam A, Teo SH, Ahmed MT, Khandaker S, Ibrahim ML, Vo DN, et al.
    Chemosphere, 2021 Jun;272:129653.
    PMID: 33486455 DOI: 10.1016/j.chemosphere.2021.129653
    The contamination of groundwater by arsenic (As) in Bangladesh is the biggest impairing of a population, with a large number of peoples affected. Specifically, groundwater of Gangetic Delta is alarmingly contaminated with arsenic. Similar, perilous circumstances exist in many other countries and consequently, there is a dire need to develop cost-effective decentralized filtration unit utilizing low-cost adsorbents for eliminating arsenic from water. Morphological synthesis of carbon with unique spherical, nanorod, and massive nanostructures were achieved by solvothermal method. Owing to their intrinsic adsorption properties and different nanostructures, these nanostructures were employed as adsorption of arsenic in aqueous solution, with the purpose to better understanding the morphological effect in adsorption. It clearly demonstrated that carbon with nanorods morphology exhibited an excellent adsorption activity of arsenite (about 82%) at pH 3, remarkably superior to the two with solid sphere and massive microstructures, because of its larger specific surface area, enhanced acid strength and improved adsorption capacity. Furthermore, we discovered that iron hydroxide radicals and energy-induced contact point formation in nanorods are the responsible for the high adsorption of As in aqueous solution. Thus, our work provides insides into the microstructure-dependent capability of different carbon for As adsorption applications.
    Matched MeSH terms: Water Purification*
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links