Affiliations 

  • 1 Department of Biomedical Sciences, Faculty of Allied Health, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia; UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia; School of Biomedical Science, University of Nottingham Malaysia Campus, 43500 Semenyih, Selangor, Malaysia; Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia; Forest Research Institute Malaysia (FRIM), 52109 Kuala Lumpur, Kepong, Malaysia; School of Biosciences, Taylor's University, Lakeside Campus, 47500 Subang Jaya, Selangor, Malaysia
J Zhejiang Univ Sci B, 2014 Aug;15(8):692-700.
PMID: 25091987 DOI: 10.1631/jzus.B1300303

Abstract

OBJECTIVE: The combination effect of Piper betle (PB) and 5-fluorouracil (5-FU) in enhancing the cytotoxic potential of 5-FU in inhibiting the growth of colon cancer cells was investigated.
METHODS: HT29 and HCT116 cells were subjected to 5-FU or PB treatment. 5-FU and PB were then combined and their effects on both cell lines were observed after 24 h of treatment. PB-5-FU interaction was elucidated by isobologram analysis. Apoptosis features of the treated cells were revealed by annexin V/PI stain. High-performance liquid chromatography (HPLC) was performed to exclude any possible chemical interaction between the compounds.
RESULTS: In the presence of PB extract, the cytotoxicity of 5-FU was observed at a lower dose (IC50 12.5 µmol/L) and a shorter time (24 h) in both cell lines. Both cell lines treated with 5-FU or PB alone induced a greater apoptosis effect compared with the combination treatment. Isobologram analysis indicated that PB and 5-FU interacted synergistically and antagonistically in inhibiting the growth of HT29 and HCT116 cells, respectively.
CONCLUSIONS: In the presence of PB, a lower dosage of 5-FU is required to achieve the maximum drug effect in inhibiting the growth of HT29 cells. However, PB did not significantly reduce 5-FU dosage in HCT116 cells. Our result showed that this interaction may not solely contribute to the apoptosis pathway.
KEYWORDS: 5-Fluorouracil; Herb-drug interaction; Isobologram analysis; Piper betle L.; Piperaceae

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.