Displaying publications 1 - 20 of 461 in total

  1. Lee SK, Tan KW, Ng SW
    J. Inorg. Biochem., 2016 06;159:14-21.
    PMID: 26901628 DOI: 10.1016/j.jinorgbio.2016.02.010
    Three transition metal derivatives (Zn, Cu, and Ni) of 2-[2-bromoethyliminomethyl]-4-[ethoxymethyl]phenol (L) were synthesized by the reaction of the metal salts with the Schiff base ligand in one pot. In the crystal structure of [Zn(L)Br], the Schiff base ligand binds to the metal center through its phenolate oxygen and imine nitrogen, and adopts a distorted tetrahedral geometry. These compounds were found to inhibit topoisomerase I (topo I) activity, induce DNA cleavage and show DNA binding activity. Moreover, these compounds were found to be cytotoxic towards several cancer cell lines (A2780, MCF-7, HT29, HepG2, A549, PC3, LNCaP) and prevent metastasis of PC3. Collectively, Cu(II) complex 2 shows superior activity relative to its Zn(II) and Ni(II) analogs.
    Matched MeSH terms: Cell Proliferation/drug effects*
  2. Masand VH, Mahajan DT, Alafeefy AM, Bukhari SN, Elsayed NN
    Eur J Pharm Sci, 2015 Sep 18;77:230-7.
    PMID: 26066412 DOI: 10.1016/j.ejps.2015.06.001
    Multiple separate quantitative structure-activity relationships (QSARs) models were built for the antiproliferative activity of substituted Phenyl 4-(2-Oxoimidazolidin-1-yl)-benzenesulfonates (PIB-SOs). A variety of descriptors were considered for PIB-SOs through QSAR model building. Genetic algorithm (GA), available in QSARINS, was employed to select optimum number and set of descriptors to build the multi-linear regression equations for a dataset of PIB-SOs. The best three parametric models were subjected to thorough internal and external validation along with Y-randomization using QSARINS, according to the OECD principles for QSAR model validation. The models were found to be statistically robust with high external predictivity. The best three parametric model, based on steric, 3D- and finger print descriptors, was found to have R(2)=0.91, R(2)ex=0.89, and CCCex=0.94. The CoMFA model, which is based on a combination of steric and electrostatic effects and graphically inferred using contour plots, gave F=229.34, R(2)CV=0.71 and R(2)=0.94. Steric repulsion, frequency of occurrence of carbon and nitrogen at topological distance of seven, and internal electronic environment of the molecule were found to have correlation with the anti-tumor activity of PIB-SOs.
    Matched MeSH terms: Cell Proliferation/drug effects*
  3. Al-Sanea MM, Ali Khan MS, Abdelazem AZ, Lee SH, Mok PL, Gamal M, et al.
    Molecules, 2018 Jan 31;23(2).
    PMID: 29385071 DOI: 10.3390/molecules23020297
    A new series of 1-phenyl-3-(4-(pyridin-3-yl)phenyl)urea derivatives were synthesized and subjected to in vitro antiproliferative screening against National Cancer Institute (NCI)-60 human cancer cell lines of nine different cancer types. Fourteen compounds 5a-n were synthesized with three different solvent exposure moieties (4-hydroxylmethylpiperidinyl and trimethoxyphenyloxy and 4-hydroxyethylpiperazine) attached to the core structure. Substituents with different π and σ values were added on the terminal phenyl group. Compounds 5a-e with a 4-hydroxymethylpiperidine moiety showed broad-spectrum antiproliferative activity with higher mean percentage inhibition values over the 60-cell line panel at 10 µM concentration. Compound 5a elicited lethal rather than inhibition effects on SK-MEL-5 melanoma cell line, 786-0, A498, RXF 393 renal cancer cell lines, and MDA-MB-468 breast cancer cell line. Two compounds, 5a and 5d showed promising mean growth inhibitions and thus were further tested at five-dose mode to determine median inhibitory concentration (IC50) values. The data revealed that urea compounds 5a and 5d are the most active derivatives, with significant efficacies and superior potencies than paclitaxel in 21 different cancer cell lines belonging particularly to renal cancer and melanoma cell lines. Moreover, 5a and 5d had superior potencies than gefitinib in 38 and 34 cancer cell lines, respectively, particularly colon cancer, breast cancer and melanoma cell lines.
    Matched MeSH terms: Cell Proliferation/drug effects*
  4. Mah SH, Lian Ee GC, Teh SS, Sukari MA
    Pak J Pharm Sci, 2015 Mar;28(2):425-9.
    PMID: 25730799
    Structure-activity relationships of eleven xanthones were comparatively predicted for four cancer cell lines after the compounds were subjected to antiproliferative assay against B-lymphocyte cells (Raji), colon carcinoma cells (LS174T), human neuroblastoma cells (IMR-32) and skin carcinoma cells (SK-MEL-28). The eleven chemical constituents were obtained naturally from the stem bark of Calophyllum inophyllum and Calophyllum soulattri. Inophinnin (1) and inophinone (2) were isolated from Calophyllum inophyllum while soulattrin (3) and phylattrin (4) were found from Calophyllum soulattri. The other xanthones were from both Calophyllum sp. and they are pyranojacareubin (5), rheediaxanthone A (6), macluraxanthone (7), 4-hydroxyxanthone (8), caloxanthone C (9), brasixanthone B (10) and trapezifolixanthone (11). Compound 3 was found to be the most cytotoxic towards all the cancer cell lines with an IC50 value of 1.25μg/mL while the simplest xanthone, compound 8 was inactive.
    Matched MeSH terms: Cell Proliferation/drug effects*
  5. Shirazi FS, Moghaddam E, Mehrali M, Oshkour AA, Metselaar HS, Kadri NA, et al.
    J Biomed Mater Res A, 2014 Nov;102(11):3973-85.
    PMID: 24376053 DOI: 10.1002/jbm.a.35074
    Calcium silicate (CS, CaSiO3 ) is a bioactive, degradable, and biocompatible ceramic and has been considered for its potential in the field of orthopedic surgery. The objective of this study is the fabrication and characterization of the β-CS/poly(1.8-octanediol citrate) (POC) biocomposite, with the goals of controlling its weight loss and improving its biological and mechanical properties. POC is one of the most biocompatible polymers, and it is widely used in biomedical engineering applications. The degradation and bioactivity of the composites were determined by soaking the composites in phosphate-buffered saline and simulated body fluid, respectively. Human osteoblast cells were cultured on the composites to determine their cell proliferation and adhesion. The results illustrated that the flexural and compressive strengths were significantly enhanced by a modification of 40% POC. It was also concluded that the degradation bioactivity and amelioration of cell proliferation increased significantly with an increasing β-CS content.
    Matched MeSH terms: Cell Proliferation/drug effects*
  6. Ghasemzadeh A, Ashkani S, Baghdadi A, Pazoki A, Jaafar HZ, Rahmat A
    Molecules, 2016 Sep 09;21(9).
    PMID: 27618000 DOI: 10.3390/molecules21091203
    Sweet basil (Ocimum basilicum Linnaeus) is aromatic herb that has been utilized in traditional medicine. To improve the phytochemical constituents and pharmaceutical quality of sweet basil leaves, ultraviolet (UV)-B irradiation at different intensities (2.30, 3.60, and 4.80 W/m²) and durations (4, 6, 8, and 10-h) was applied at the post-harvest stage. Total flavonoid content (TFC) and total phenolic content (TPC) were measured using spectrophotometric method, and individual flavonoids and phenolic acids were identified using ultra-high performance liquid chromatography. As a key enzyme for the metabolism of flavonoids, chalcone synthase (CHS) activity, was measured using a CHS assay. Antioxidant activity and antiproliferative activity of extracts against a breast cancer cell line (MCF-7) were evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays, respectively. UV-B irradiation at an intensity of 3.60 W/m² increased TFC approximately 0.85-fold and also increased quercetin (0.41-fold), catechin (0.85-fold), kaempferol (0.65-fold) rutin (0.68-fold) and luteolin (1.00-fold) content. The highest TPC and individual phenolic acid (gallic acid, cinnamic acid and ferulic acid) was observed in the 3.60 W/m² of UV-B treatment. Cinnamic acid and luteolin were not detected in the control plants, production being induced by UV-B irradiation. Production of these secondary metabolites was also significantly influenced by the duration of UV-B irradiation. Irradiation for 8-h led to higher TFC, TPC and individual flavonoids and phenolic acids than for the other durations (4, 8, and 10-h) except for cinnamic acid, which was detected at higher concentration when irradiated for 6-h. Irradiation for 10-h significantly decreased the secondary metabolite production in sweet basil leaves. CHS activity was induced by UV-B irradiation and highest activity was observed at 3.60 W/m² of UV-B irradiation. UV-B treated leaves presented the highest DPPH activity and antiproliferative activity with a half-maximal inhibitory concentration (IC50) value of 56.0 and 40.8 µg/mL, respectively, over that of the control plants (78.0 and 58.2 µg/mL, respectively). These observations suggest that post-harvest irradiation with UV-B can be considered a promising technique to improve the healthy-nutritional and pharmaceutical properties of sweet basil leaves.
    Matched MeSH terms: Cell Proliferation/drug effects*
  7. Ghanghoria R, Kesharwani P, Jain NK
    Mini Rev Med Chem, 2017;17(18):1713-1724.
    PMID: 26891934 DOI: 10.2174/1389557516666160219122002
    The experimental models are of vital significance to provide information regarding biological as well as genetic factors that control the phenotypic characteristics of the disease and serve as the foundation for the development of rational intervention stratagem. This review highlights the importance of experimental models in the field of cancer management. The process of pathogenesis in cancer progression, invasion and metastasis can be successfully explained by employing clinically relevant laboratory models of the disease. Cancer cell lines have been used extensively to monitor the process of cancer pathogenesis process by controlling growth regulation and chemo-sensitivity for the evaluation of novel therapeutics in both in vitro and xenograft models. The experimental models have been used for the elaboration of diagnostic or therapeutic protocols, and thus employed in preclinical studies of bioactive agents relevant for cancer prevention. The outcome of this review should provide useful information in understanding and selection of various models in accordance with the stage of cancer.
    Matched MeSH terms: Cell Proliferation/drug effects
  8. Zakaria KN, Amid A, Zakaria Z, Jamal P, Ismail A
    Asian Pac J Cancer Prev, 2019 Feb 26;20(2):563-567.
    PMID: 30803221
    Problem statement: Clinicanthus nutans has been used by Malaysian since long time ago. It is used to treat many
    diseases including cancer. Many studies carried out on its crude extract but no clear report on the specific secondary
    metabolites responsible for its nature in treating selected diseases. Objective: This study aims to confirm the practice
    carried out by many people on the usage of Clinicanthus nutans in treating cancer. Methods: C. nutans leaves were
    extracted by methanol. Thin layer chromatography was used to identify the suitable solvent for fractions separation.
    The fractions were then separated at larger volume using gravity column chromatography. Each fraction was tested on
    its anti-proliferative activity on Hep-G2 liver cancer cells by MTT assay. The phytochemical screening was carried out
    to identify the bioactive compound based on qualitative analysis. Results: The fraction 2 (F2) of C. nutans showed the
    lowest IC50 value of 1.73 μg/ml against Hep-G2 cancer cells, and it is identified as triterpenes. Conclusion: The fraction
    F2 identified as triterpenes isolated from C. nutans has potential as an anti-proliferative agent against liver cancer.
    Matched MeSH terms: Cell Proliferation/drug effects*
  9. Jothy SL, Vijayarathna S, Chen Y, Kanwar JR, Sasidharan S
    Asian Pac J Cancer Prev, 2015;16(17):8015.
    PMID: 26625835
    Matched MeSH terms: Cell Proliferation/drug effects
  10. Law JW, Chan KG, He YW, Khan TM, Ab Mutalib NS, Goh BH, et al.
    Sci Rep, 2019 12 03;9(1):15262.
    PMID: 31792235 DOI: 10.1038/s41598-019-51622-x
    Streptomycetes have been the center of attraction within scientific community owing to their capability to produce various bioactive compounds, for instance, with different antimicrobial, anticancer, and antioxidant properties. The search for novel Streptomyces spp. from underexplored area such as mangrove environment has been gaining attention since these microorganisms could produce pharmaceutically important metabolites. The aim of this study is to discover the diversity of Streptomyces spp. from mangrove in Sarawak and their bioactive potentials - in relation to antioxidant and cytotoxic activities. A total of 88 Streptomyces isolates were successfully recovered from the mangrove soil in Kuching, state of Sarawak, Malaysia. Phylogenetic analysis of all the isolates and their closely related type strains using 16S rRNA gene sequences resulted in 7 major clades in the phylogenetic tree reconstructed based on neighbour-joining algorithm. Of the 88 isolates, 18 isolates could be considered as potentially novel species according to the 16S rRNA gene sequence and phylogenetic analyses. Preliminary bioactivity screening conducted on the potential novel Streptomyces isolates revealed significant antioxidant activity and notable cytotoxic effect against tested colon cancer cell lines (HCT-116, HT-29, Caco-2, and SW480), with greater cytotoxicity towards SW480 and HT-29 cells. This study highlighted that the Sarawak mangrove environment is a rich reservoir containing streptomycetes that could produce novel secondary metabolites with antioxidant and cytotoxic activities.
    Matched MeSH terms: Cell Proliferation/drug effects*
  11. Ragab TIM, Malek RA, Elsehemy IA, Farag MMS, Salama BM, Abd El-Baseer MA, et al.
    J Biosci Bioeng, 2019 Jun;127(6):655-662.
    PMID: 30795878 DOI: 10.1016/j.jbiosc.2018.09.008
    This study focused on kinetics of levan yield by Bacillus subtilis M, in a 150 L stirred tank bioreactor under controlled pH conditions. The optimized production medium was composed of (g/L): commercial sucrose 100.0, yeast extract 2.0, K2HPO4 3.0 and MgSO4⋅7H2O 0.2; an increase in both carbohydrates consumption and cell growth depended on increasing the size of the stirred tank bioreactor from 16 L to 150 L. The highest levansucrase production (63.4 U/mL) and levan yield of 47 g/L was obtained after 24 h. Also, the specific levan yield (Yp/x) which reflects the cell productivity increased with the size increase of the stirred tank bioreactor and reached its maximum value of about 29.4 g/g cells. These results suggested that B. subtilis M could play an important role in levan yield on a large scale in the future. Chemical modifications of B. subtilis M crude levan (CL) into sulfated (SL), phosphorylated (PL), and carboxymethylated levans (CML) were done. The difference in CL structure and its derivatives was detected by FT-IR transmission spectrum. The cytotoxicity of CL and its derivatives were evaluated by HepGII, Mcf-7 and CaCo-2. In general most tested levans forms had no significant cytotoxicity effect. In fact, the carboxymethylated and phosphrylated forms had a lower anti-cancer effect than CL. On the other hand, SL had the highest cytotoxicity showing SL had a significant anti-cancer effect. The results of cytotoxicity and cell viability were statistically analyzed using three-way ANOVA.
    Matched MeSH terms: Cell Proliferation/drug effects
  12. Engström W, Darbre P, Eriksson S, Gulliver L, Hultman T, Karamouzis MV, et al.
    Carcinogenesis, 2015 Jun;36 Suppl 1:S38-60.
    PMID: 26106143 DOI: 10.1093/carcin/bgv030
    The aim of this work is to review current knowledge relating the established cancer hallmark, sustained cell proliferation to the existence of chemicals present as low dose mixtures in the environment. Normal cell proliferation is under tight control, i.e. cells respond to a signal to proliferate, and although most cells continue to proliferate into adult life, the multiplication ceases once the stimulatory signal disappears or if the cells are exposed to growth inhibitory signals. Under such circumstances, normal cells remain quiescent until they are stimulated to resume further proliferation. In contrast, tumour cells are unable to halt proliferation, either when subjected to growth inhibitory signals or in the absence of growth stimulatory signals. Environmental chemicals with carcinogenic potential may cause sustained cell proliferation by interfering with some cell proliferation control mechanisms committing cells to an indefinite proliferative span.
    Matched MeSH terms: Cell Proliferation/drug effects*
  13. Khor SC, Mohd Yusof YA, Wan Ngah WZ, Makpol S
    Clin Ter, 2015;166(2):e81-90.
    PMID: 25945449 DOI: 10.7417/CT.2015.1825
    BACKGROUND AND OBJECTIVE: Vitamin E has been suggested as nutritional intervention for the prevention of degenerative and age-related diseases. In this study, we aimed to elucidate the underlying mechanism of tocotrienol-rich fraction (TRF) in delaying cellular aging by targeting the proliferation signaling pathways in human diploid fibroblasts (HDFs).

    MATERIALS AND METHODS: Tocotrienol-rich fraction was used to treat different stages of cellular aging of primary human diploid fibroblasts viz. young (passage 6), pre-senescent (passage 15) and senescent (passage 30). Several selected targets involved in the downstream of PI3K/AKT and RAF/MEK/ERK pathways were compared in total RNA and protein.

    RESULTS: Different transcriptional profiles were observed in young, pre-senescent and senescent HDFs, in which cellular aging increased AKT, FOXO3, CDKN1A and RSK1 mRNA expression level, but decreased ELK1, FOS and SIRT1 mRNA expression level. With tocotrienol-rich fraction treatment, gene expression of AKT, FOXO3, ERK and RSK1 mRNA was decreased in senescent cells, but not in young cells. The three down-regulated mRNA in cellular aging, ELK1, FOS and SIRT1, were increased with tocotrienol-rich fraction treatment. Expression of FOXO3 and P21Cip1 proteins showed up-regulation in senescent cells but tocotrienol-rich fraction only decreased P21Cip1 protein expression in senescent cells.

    CONCLUSIONS: Tocotrienol-rich fraction exerts gene modulating properties that might be responsible in promoting cell cycle progression during cellular aging.

    Matched MeSH terms: Cell Proliferation/drug effects*
  14. Kamarudin MNA, Sarker MMR, Zhou JR, Parhar I
    J. Exp. Clin. Cancer Res., 2019 Dec 12;38(1):491.
    PMID: 31831021 DOI: 10.1186/s13046-019-1495-2
    Growing evidence showed the increased prevalence of cancer incidents, particularly colorectal cancer, among type 2 diabetic mellitus patients. Antidiabetic medications such as, insulin, sulfonylureas, dipeptyl peptidase (DPP) 4 inhibitors and glucose-dependent insulinotropic peptide (GLP-1) analogues increased the additional risk of different cancers to diabetic patients. Conversely, metformin has drawn attention among physicians and researchers since its use as antidiabetic drug exhibited beneficial effect in the prevention and treatment of cancer in diabetic patients as well as an independent anticancer drug. This review aims to provide the comprehensive information on the use of metformin at preclinical and clinical stages among colorectal cancer patients. We highlight the efficacy of metformin as an anti-proliferative, chemopreventive, apoptosis inducing agent, adjuvant, and radio-chemosensitizer in various colorectal cancer models. This multifarious effects of metformin is largely attributed to its capability in modulating upstream and downstream molecular targets involved in apoptosis, autophagy, cell cycle, oxidative stress, inflammation, metabolic homeostasis, and epigenetic regulation. Moreover, the review highlights metformin intake and colorectal cancer risk based on different clinical and epidemiologic results from different gender and specific population background among diabetic and non-diabetic patients. The improved understanding of metformin as a potential chemotherapeutic drug or as neo-adjuvant will provide better information for it to be used globally as an affordable, well-tolerated, and effective anticancer agent for colorectal cancer.
    Matched MeSH terms: Cell Proliferation/drug effects
  15. Murthy S, Hazli UHAM, Kong KW, Mai CW, Leong CO, Rahman NA, et al.
    Curr Org Synth, 2019;16(8):1166-1173.
    PMID: 31984923 DOI: 10.2174/1570179416666191003095253
    BACKGROUND: Sesamol is a widely used antioxidant for the food and pharmaceutical industries. The oxidation products of this compound may be accumulated in foods or ingested. Little is known about its effect on human health.

    OBJECTIVE: It is of great interest to identify the oxidation products of sesamol that may be beneficial to humans. This study was undertaken to identify the oxidation products of sesamol and investigate their antioxidant and cytotoxic activities.

    MATERIALS AND METHODS: Using the ferricyanide oxidation approach, four oxidation products of sesamol (2, 3, 20 & 21) have been identified. Structural elucidation of these compounds was established on the basis of their detailed NMR spectroscopic analysis, mass spectrometry and x-ray crystallography. Additionally, a formation mechanism of compound 20 was proposed based on high-resolution mass spectrometry-fragmentation method. The antioxidant activities of these compounds were determined by the DPPH, FRAP, and ABTS assays. The in vitro antiproliferative activity of these compounds was evaluated against a panel of human cancer cell lines as well as non-cancerous cells.

    RESULTS: Two oxidation products of sesamol were found to contain an unusual methylenedioxy ring-opening skeleton, as evidenced by spectroscopic and x-ray crystallographic data. Among all compounds, 20 displayed impressive antiproliferative activities against a panel of human cancer cell lines yet remained non-toxic to noncancerous cells. The antioxidant activities of compound 20 are significantly weaker than sesamol as determined by the DPPH, FRAP, and ABTS assays.

    CONCLUSION: The oxidation products of sesamol could be a valuable source of bioactive molecules. Compound 20 may be used as a potential lead molecule for cancer studies.

    Matched MeSH terms: Cell Proliferation/drug effects
  16. Azmi MF, Ghafar NA, Hamzah JC, Luan NS, Hui CK
    Wounds, 2017 Nov;29(11):327-332.
    PMID: 28678731
    OBJECTIVE: The aim of this study is to investigate the potential bene ts of Gelam honey (GH) in promoting proliferation of ex vivo cor- neal epithelial cells (CECs) and its effects on the phenotypical features.

    MATERIALS AND METHODS: Corneal epithelial cells were isolated from the corneas of rabbits (n = 6). The optimal dose of GH for CEC proliferation in both basal medium (BM) and cornea medium (CM) was determined via MTT (3-[4, 5-dimethyl thiazolyl-2]-2, 5-diphenyl tetrazolium bro- mide) assay. Morphology, gene and protein expressions, and cell cycle analysis of CECs were evaluated via phase contrast microscopy, real- time polymerase chain reaction, immunocytochemistry, and ow cytom- etry, respectively.

    RESULTS: Corneal epithelial cells cultured in 0.0015% GH-supplemented media (BM + 0.0015% GH; CM + 0.0015% GH) demonstrated optimal proliferative capacity with normal polygonal- shaped morphology. Gelam honey potentiates cytokeratin 3 (CK3) gene expression in accordance with the cytoplasmic CK3 protein expression while retaining normal cell cycle of CECs.

    CONCLUSION: Culture media treated with 0.0015% GH increased CEC proliferation while preserving its phenotypical features. This study demonstrated the potential devel- opment of GH-based topical treatment for super cial corneal injury.

    Matched MeSH terms: Cell Proliferation/drug effects
  17. Rasouli E, Basirun WJ, Johan MR, Rezayi M, Darroudi M, Shameli K, et al.
    J. Cell. Biochem., 2019 04;120(4):6624-6631.
    PMID: 30368873 DOI: 10.1002/jcb.27958
    In the present research, we report a greener, faster, and low-cost synthesis of gold-coated iron oxide nanoparticles (Fe3 O4 /Au-NPs) by different ratios (1:1, 2:1, and 3:1 molar ratio) of iron oxide and gold with natural honey (0.5% w/v) under hydrothermal conditions for 20 minutes. Honey was used as the reducing and stabilizing agent, respectively. The nanoparticles were characterized by X-ray diffraction (XRD), UV-visible spectroscopy, field emission scanning electron microscope (FESEM), energy-dispersive X-ray spectroscopy (EDXS), transmission electron microscopy (TEM), selected area electron diffraction (SAED), vibrating sample magnetometer (VSM), and fourier transformed infrared spectroscopy (FT-IR). The XRD analysis indicated the presence of Fe3 O4 /Au-NPs, while the TEM images showed the formation of Fe3 O4 /Au-NPs with diameter range between 3.49 nm and 4.11 nm. The VSM study demonstrated that the magnetic properties were decreased in the Fe3 O4 /Au-NPs compared with the Fe3 O4 -NPs. The cytotoxicity threshold of Fe3 O4 /Au-NPs in the WEHI164 cells was determined by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. It was demonstrated no significant toxicity in higher concentration up to 140.0 ppm which can become the main candidates for biological and biomedical applications, such as drug delivery.
    Matched MeSH terms: Cell Proliferation/drug effects*
  18. Kabir MF, Mohd Ali J, Abolmaesoomi M, Hashim OH
    BMC Complement Altern Med, 2017 May 05;17(1):252.
    PMID: 28476158 DOI: 10.1186/s12906-017-1761-9
    BACKGROUND: Melicope ptelefolia is a well-known herb in a number of Asian countries. It is often used as vegetable salad and traditional medicine to address various ailments. However, not many studies have been currently done to evaluate the medicinal benefits of M. ptelefolia (MP). The present study reports antioxidant, anti-proliferative, and apoptosis induction activities of MP leaf extracts.

    METHOD: Young MP leaves were dried, powdered and extracted sequentially using hexane (HX), ethyl acetate (EA), methanol (MeOH) and water (W). Antioxidant activity was evaluated using ferric reducing antioxidant power (FRAP), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) radicals scavenging and cellular antioxidant activity (CAA) assays. Anti-proliferative activity was evaluated through cell viability assay, using the following four human cancer cell lines: breast (HCC1937, MDA-MB-231), colorectal (HCT116) and liver (HepG2). The anti-proliferative activity was further confirmed through cell cycle and apoptosis assays, including annexin-V/7-aminoactinomycin D staining and measurements of caspase enzymes activation and inhibition.

    RESULT: Overall, MP-HX extract exhibited the highest antioxidant potential, with IC50 values of 267.73 ± 5.58 and 327.40 ± 3.80 μg/mL for ABTS and DPPH radical-scavenging assays, respectively. MP-HX demonstrated the highest CAA activity in Hs27 cells, with EC50 of 11.30 ± 0.68 μg/mL, while MP-EA showed EC50 value of 37.32 ± 0.68 μg/mL. MP-HX and MP-EA showed promising anti-proliferative activity towards the four cancer cell lines, with IC50 values that were mostly below 100 μg/mL. MP-HX showed the most notable anti-proliferative activity against MDA-MB-231 (IC50 = 57.81 ± 3.49 μg/mL) and HCT116 (IC50 = 58.04 ± 0.96 μg/mL) while MP-EA showed strongest anti-proliferative activity in HCT116 (IC50 = 64.69 ± 0.72 μg/mL). The anticancer potential of MP-HX and MP-EA were also demonstrated by their ability to induce caspase-dependent apoptotic cell death in all of the cancer cell lines tested. Cell cycle analysis suggested that both the MP-HX and MP-EA extracts were able to disrupt the cell cycle in most of the cancer cell lines.

    CONCLUSIONS: MP-HX and MP-EA extracts demonstrated notable antioxidant, anti-proliferative, apoptosis induction and cancer cell cycle inhibition activities. These findings reflect the promising potentials of MP to be a source of novel phytochemical(s) with health promoting benefits that are also valuable for nutraceutical industry and cancer therapy.

    Matched MeSH terms: Cell Proliferation/drug effects*
  19. Sim DS, Navanesan S, Sim KS, Gurusamy S, Lim SH, Low YY, et al.
    J Nat Prod, 2019 04 26;82(4):850-858.
    PMID: 30869890 DOI: 10.1021/acs.jnatprod.8b00919
    Examination of the EtOH extract of the leaves of the Malayan Tabernaemontana corymbosa resulted in the isolation of four new (1-4) and two known bisindole alkaloids (5, 6) of the Aspidosperma- Aspidosperma type. The structures of these alkaloids were determined based on analysis of the spectroscopic data (NMR and HRESIMS). X-ray diffraction analyses of the related bisindole alkaloids conophylline (5) and conophyllinine (6) established the absolute configurations. Treatment of the bisindole alkaloid conophylline (5) with benzeneselenic anhydride gave, in addition to the known bisindole polyervinine (7) previously isolated from another Malayan Tabernaemontana, another bisindole product, 8, an isolable tautomer of 7. X-ray diffraction analyses yielded the absolute configurations of both bisindoles and in addition showed that polyervinine (7) exists primarily as the neutral dione structure. The bisindoles (1-8) and the related conophylline-type bisindoles (9-13) showed pronounced in vitro growth inhibitory activity against an array of human cancer cell lines, including KB, vincristine-resistant KB, PC-3, LNCaP, MCF7, MDA-MB-231, A549, HT-29, and HCT 116 cells, with IC50 values for the active compounds in the 0.01-5 μM range.
    Matched MeSH terms: Cell Proliferation/drug effects*
  20. Haron NH, Md Toha Z, Abas R, Hamdan MR, Azman N, Khairuddean M, et al.
    Asian Pac J Cancer Prev, 2019 Feb 26;20(2):601-609.
    PMID: 30806066
    Objective: This study was conducted to investigate the antiproliferative activity of extracts of Clinacanthus nutans
    leaves against human cervical cancer (HeLa) cells. Methods: C. nutans leaves were subjected to extraction using 80%
    methanol or water. The methanol extract was further extracted to obtain hexane, dichloromethane (DCM), and aqueous
    fractions. The antiproliferative activity of the extracts against HeLa cells was determined. The most cytotoxic extract
    was furthered analyzed by apoptosis and cell cycle assays, and the phytochemical constituents were screened by gas
    chromatography-mass spectrometry (GC-MS). Results: All of the extracts were antiproliferative against HeLa cells, and
    the DCM fraction had the lowest IC50 value of 70 μg/mL at 48 h. Microscopic studies showed that HeLa cells exposed
    to the DCM fraction exhibited marked morphological features of apoptosis. The flow cytometry study also confirmed
    that the DCM fraction induced apoptosis in HeLa cells, with cell cycle arrest at the S phase. GC-MS analysis revealed
    the presence of at least 28 compounds in the DCM fraction, most of which were fatty acids. Conclusion: The DCM
    fraction obtained using the extraction method described herein had a lower IC50 value than those reported in previous
    studies that characterized the anticancer activity of C. nutans against HeLa cells.
    Matched MeSH terms: Cell Proliferation/drug effects*
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links