Displaying publications 1 - 20 of 107 in total

Abstract:
Sort:
  1. Sarfaraz S, Ahmed N, Abbasi MS, Sajjad B, Vohra F, Al-Hamdan RS, et al.
    Work, 2020;67(4):791-798.
    PMID: 33325429 DOI: 10.3233/WOR-203332
    BACKGROUND: The aim of this study was to evaluate the self-perceived competency (FSPC) of medical faculty in E-Teaching and support received during the COVID-19 pandemic.

    METHODS: An online well-structured and validated faculty self-perceived competency questionnaire was used to collect responses from medical faculty. The questionnaire consisted of four purposely build sections on competence in student engagement, instructional strategy, technical communication and time management. The responses were recorded using a Likert ordinal scale (1-9). The Questionnaire was uploaded at www.surveys.google.com and the link was distributed through social media outlets and e-mails. Descriptive statistics and Independent paired t-test were used for analysis and comparison of quantitative and qualitative variables. A p-value of ≤0.05 was considered statistically significant.

    RESULTS: A total of 738 responses were assessed. Nearly 54% (397) participants had less than 5 years of teaching experience, 24.7% (182) had 6-10 years and 11.7% (86) had 11-15 years teaching expertise. 75.6% (558) respondents have delivered online lectures during the pandemic. Asynchronous methods were used by 61% (450) and synchronous by 39% (288) of participants. Moreover, 22.4% (165) participants revealed that their online lectures were evaluated by a structured feedback from experts, while 38.3% participants chose that their lectures were not evaluated. A significant difference (p 

  2. Naveed M, Ali U, Karobari MI, Ahmed N, Mohamed RN, Abullais SS, et al.
    Vaccines (Basel), 2022 Apr 22;10(5).
    PMID: 35632420 DOI: 10.3390/vaccines10050664
    Mucormycosis is a group of infections, caused by multiple fungal species, which affect many human organs and is lethal in immunocompromised patients. During the COVID-19 pandemic, the current wave of mucormycosis is a challenge to medical professionals as its effects are multiplied because of the severity of COVID-19 infection. The variant of concern, Omicron, has been linked to fatal mucormycosis infections in the US and Asia. Consequently, current postdiagnostic treatments of mucormycosis have been rendered unsatisfactory. In this hour of need, a preinfection cure is needed that may prevent lethal infections in immunocompromised individuals. This study proposes a potential vaccine construct targeting mucor and rhizopus species responsible for mucormycosis infections, providing immunoprotection to immunocompromised patients. The vaccine construct, with an antigenicity score of 0.75 covering, on average, 92-98% of the world population, was designed using an immunoinformatics approach. Molecular interactions with major histocompatibility complex-1 (MHC-I), Toll-like receptors-2 (TLR2), and glucose-regulated protein 78 (GRP78), with scores of -896.0, -948.4, and -925.0, respectively, demonstrated its potential to bind with the human immune receptors. It elicited a strong predicted innate and adaptive immune response in the form of helper T (Th) cells, cytotoxic T (TC) cells, B cells, natural killer (NK) cells, and macrophages. The vaccine cloned in the pBR322 vector showed positive amplification, further solidifying its stability and potential. The proposed construct holds a promising approach as the first step towards an antimucormycosis vaccine and may contribute to minimizing postdiagnostic burdens and failures.
  3. Badami ZA, Mustafa H, Maqsood A, Aijaz S, Altamash S, Lal A, et al.
    Vaccines (Basel), 2022 Dec 05;10(12).
    PMID: 36560486 DOI: 10.3390/vaccines10122076
    Vaccination plays a crucial role in controlling the rate of coronavirus transmission and infectivity. Healthcare professionals are, in fact, at the greatest risk of contracting coronavirus due to their proximity and prolonged exposure to infected patients; this certitude alone enhances the stress and anxiety among patients and professionals alike. In this study, we aimed to assess the levels of anxiety experienced by healthcare professionals in their practices before and after getting vaccinated. This cross-sectional study was carried out in 2021. An electronic survey was distributed among the non-vaccinated and vaccinated healthcare workers. The survey consisted of the following parts: demographic characteristics, coronavirus-related questions, questions related to the specific field of healthcare professions, general anxiety questions, and working-hour-related questions. The Modified General Anxiety Scale (GAD-7) was used along with the paired t-test, Mann-Whitney U test, and Spearmen's test for comparison. p ≤ 0.05 was considered statistically significant. A total of 798 healthcare professionals participated in the study. In this study, the majority of participants were females, with 598 (74.9%) being between the ages of 21 and 30, and 646 (80.9%) participants were graduates, with the majority being dentists. Non-vaccinated healthcare professionals had severe anxiety (30.9%), whereas, in vaccinated participants, anxiety levels were minimal (56.9%). A statistically significant correlation was discovered when comparing the scores of the vaccinated and non-vaccinated individuals as well as when comparing the professions of vaccinated participants, whereas no association was found with the gender and education level of participants. Vaccination is necessary for all entitled individuals to control the spread of coronavirus. It was discovered that there was an increase in anxiety levels before the vaccination was introduced. The anxiousness was greatly lessened following mass immunizations. Our research will help to raise public awareness of stigmatized mental health disorders in the healthcare industry.
  4. Inn FX, Ahmed N, Hing EY, Jasman MH
    Urol Ann, 2017 5 10;9(2):194-196.
    PMID: 28479777 DOI: 10.4103/0974-7796.204178
    Tyrosine kinase inhibitor (TKI) and its side effects are well known. However, these are mainly descriptive, with pictorial data lacking. Here, in we report a case of metastatic renal cell carcinoma, treated with TKI, with classic side effects; supplemented with images that demonstrate the adverse effects of the drug. In addition, we discuss and demonstrate the computed tomography changes.
  5. Kamangar S, Kalimuthu G, Badruddin IA, Badarudin A, Ahmed NJ, Khan TM
    ScientificWorldJournal, 2014;2014:354946.
    PMID: 25258722 DOI: 10.1155/2014/354946
    The present study deals with the functional severity of a coronary artery stenosis assessed by the fractional flow reserve (FFR). The effects of different geometrical shapes of lesion on the diagnostic parameters are unknown. In this study, 3D computational simulation of blood flow in three different geometrical shapes of stenosis (triangular, elliptical, and trapezium) is considered in steady and transient conditions for 70% (moderate), 80% (intermediate), and 90% (severe) area stenosis (AS). For a given percentage AS, the variation of diagnostic parameters which are derived from pressure drop across the stenosis was found in three different geometrical shapes of stenosis and it was observed that FFR is higher in triangular shape and lower in trapezium shape. The pressure drop coefficient (CDP) was higher in trapezium shape and lower in triangular model whereas the LFC shows opposite trend. From the clinical perspective, the relationship between percentage AS and FFR is linear and inversely related in all the three models. A cut-off value of 0.75 for FFR was observed at 76.5% AS in trapezium model, 79.5% in elliptical model, and 82.7% AS for the triangular shaped model. The misinterpretation of the functional severity of the stenosis is in the region of 76.5%-82.7 % AS from different shapes of stenosis models.
  6. Hoque MA, Pradhan B, Ahmed N, Sohel MSI
    Sci Total Environ, 2020 Nov 17.
    PMID: 33248778 DOI: 10.1016/j.scitotenv.2020.143600
    Droughts are recurring events in Australia and cause a severe effect on agricultural and water resources. However, the studies about agricultural drought risk mapping are very limited in Australia. Therefore, a comprehensive agricultural drought risk assessment approach that incorporates all the risk components with their influencing criteria is essential to generate detailed drought risk information for operational drought management. A comprehensive agricultural drought risk assessment approach was prepared in this work incorporating all components of risk (hazard, vulnerability, exposure, and mitigation capacity) with their relevant criteria using geospatial techniques. The prepared approach is then applied to identify the spatial pattern of agricultural drought risk for Northern New South Wales region of Australia. A total of 16 relevant criteria under each risk component were considered, and fuzzy logic aided geospatial techniques were used to prepare vulnerability, exposure, hazard, and mitigation capacity indices. These indices were then incorporated to quantify agricultural drought risk comprehensively in the study area. The outputs depicted that about 19.2% and 41.7% areas are under very-high and moderate to high risk to agricultural droughts, respectively. The efficiency of the results is successfully evaluated using a drought inventory map. The generated spatial drought risk information produced by this study can assist relevant authorities in formulating proactive agricultural drought mitigation strategies.
  7. Pazikadin AR, Rifai D, Ali K, Malik MZ, Abdalla AN, Faraj MA
    Sci Total Environ, 2020 May 01;715:136848.
    PMID: 32040994 DOI: 10.1016/j.scitotenv.2020.136848
    The increased demand for solar renewable energy sources has created recent interest in the economic and technical issues related to the integration of Photovoltaic (PV) into the grid. Solar photovoltaic power generation forecasting is a crucial aspect of ensuring optimum grid control and power solar plant design. Accurate forecasting provides significant information to grid operators and power system designers in generating an optimal solar photovoltaic plant and to manage the power of demand and supply. This paper presents an extensive review on the implementation of Artificial Neural Networks (ANN) on solar power generation forecasting. The instrument used to measure the solar irradiance is analysed and discussed, specifically on studies that were published from February 1st, 2014 to February 1st, 2019. The selected papers were obtained from five major databases, namely, Direct Science, IEEE Xplore, Google Scholar, MDPI, and Scopus. The results of the review demonstrate the increased application of ANN on solar power generation forecasting. The hybrid system of ANN produces accurate results compared to individual models. The review also revealed that improvement forecasting accuracy can be achieved through proper handling and calibration of the solar irradiance instrument. This finding indicates that improvements in solar forecasting accuracy can be increased by reducing instrument errors that measure the weather parameter.
  8. Ahmed N, Halim MS, Khalid S, Ghani ZA, Jamayet NB
    J Prosthet Dent, 2021 Jul 31.
    PMID: 34340826 DOI: 10.1016/j.prosdent.2021.06.015
    STATEMENT OF PROBLEM: The color and form of teeth are 2 of the 3 main determinants of success in an esthetic restoration; the third is dental proportion. A recent systematic review of the literature devoted to the evaluation of dental proportion is lacking.

    PURPOSE: The purpose of this systematic review was to investigate the quality and outcome of studies into maxillary anterior tooth proportion and to determine whether dental proportion ratios based on different geographic regions are appropriate.

    MATERIAL AND METHODS: An electronic search was conducted using PubMed, MEDLINE, Google Scholar, Embase, Scopus, Cochrane Library, Web of Science, and Science Direct databases. English-language articles reporting with the specific combination of medical subject heading (MeSH) key words were analyzed by 2 investigators. The titles, full text, and abstracts were scanned by investigators independently to identify articles that fulfilled the inclusion criteria. The general characteristics, outcomes, and quality of each study were reviewed and analyzed systematically.

    RESULTS: The search plan resulted in a total of 73 articles until September 2020; of which, 16 articles fulfilling the inclusion criteria were selected. The geographic distribution of the selected article revealed 12 articles from Asia, 2 from Continental Europe, and 2 from the United Kingdom. Golden percentage values of 25%, 15%, and 10% for central, lateral incisor, and canine teeth were not found. The mean predicted dental percentage was either larger or smaller than the successive widths of maxillary natural anterior teeth.

    CONCLUSIONS: The golden percentage could not be used to formulate a smile design. Rather, the dental ratios should be set on a racial and ethnic basis for a population.

  9. Ahmed N, Khalid S, Vohra F, Halim MS, Al-Saleh S, Tulbah HI, et al.
    J Prosthet Dent, 2024 Feb;131(2):187-196.
    PMID: 35277267 DOI: 10.1016/j.prosdent.2021.11.035
    STATEMENT OF PROBLEM: The recurrent esthetic dental (RED) proportion has been a benchmark for the rehabilitation of the maxillary anterior teeth of North American patients. While it has been evaluated in other populations, the global application of RED proportions in the rehabilitation of maxillary anterior teeth is unclear.

    PURPOSE: The purpose of this systematic review was to examine the existing evidence on dental proportion to evaluate the existence of RED proportions in the esthetic smile in different geographic regions.

    MATERIAL AND METHODS: A systematic search was conducted by reviewing different databases. The focused question was "Does RED proportion exist in esthetically pleasing smiles in different populations around the world?" The search included articles with a combination of MeSH keywords based on dental proportion from January 2000 to July 2020. The titles and abstracts were identified by using a search protocol. Full text of the articles was independently evaluated. The systematic review was modified to summarize the relevant data. The general characteristics, outcomes, and quality of studies were reviewed and analyzed systematically.

    RESULTS: Seventeen studies were selected from the reviewed articles. Three studies were conducted in Europe, 10 in South Asia, and 4 in Western Asia. Eleven studies found that the mean perceived ratio of anterior teeth was not constant when progressing distally. Five studies reported that the ratio was constant in a small percentage of their populations, and 1 suggested that the ratio was constant if it remains between 60% and 80%. The central-to-LI and Ca-to-LI proportion values were not constant. Overall, the Ca-to-LI proportion values were higher than the central-to-LI proportions.

    CONCLUSIONS: RED proportions were not found in the successive widths of maxillary anterior teeth among the reviewed data from different geographic regions. RED proportions are not the only standard for restoring esthetic smiles worldwide, and anterior tooth proportions differ among populations based on their race and ethnicity.

  10. Kadirgama K, Noor MM, Abd Alla AN
    Sensors (Basel), 2010;10(3):2054-63.
    PMID: 22294914 DOI: 10.3390/s100302054
    Metal cutting processes are important due to increased consumer demands for quality metal cutting related products (more precise tolerances and better product surface roughness) that has driven the metal cutting industry to continuously improve quality control of metal cutting processes. This paper presents optimum surface roughness by using milling mould aluminium alloys (AA6061-T6) with Response Ant Colony Optimization (RACO). The approach is based on Response Surface Method (RSM) and Ant Colony Optimization (ACO). The main objectives to find the optimized parameters and the most dominant variables (cutting speed, feedrate, axial depth and radial depth). The first order model indicates that the feedrate is the most significant factor affecting surface roughness.
  11. Rifai D, Abdalla AN, Ali K, Razali R
    Sensors (Basel), 2016;16(3):298.
    PMID: 26927123 DOI: 10.3390/s16030298
    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.
  12. Abdalla AN, Ali K, Paw JKS, Rifai D, Faraj MA
    Sensors (Basel), 2018 Jun 30;18(7).
    PMID: 29966367 DOI: 10.3390/s18072108
    Eddy current testing (ECT) is an accurate, widely used and well-understood inspection technique, particularly in the aircraft and nuclear industries. The coating thickness or lift-off will influence the measurement of defect depth on pipes or plates. It will be an uncertain decision condition whether the defects on a workpiece are cracks or scratches. This problem can lead to the occurrence of pipe leakages, besides causing the degradation of a company’s productivity and most importantly risking the safety of workers. In this paper, a novel eddy current testing error compensation technique based on Mamdani-type fuzzy coupled differential and absolute probes was proposed. The general descriptions of the proposed ECT technique include details of the system design, intelligent fuzzy logic design and Simulink block development design. The detailed description of the proposed probe selection, design and instrumentation of the error compensation of eddy current testing (ECECT) along with the absolute probe and differential probe relevant to the present research work are presented. The ECECT simulation and hardware design are proposed, using the fuzzy logic technique for the development of the new methodology. The depths of the defect coefficients of the probe’s lift-off caused by the coating thickness were measured by using a designed setup. In this result, the ECECT gives an optimum correction for the lift-off, in which the reduction of error is only within 0.1% of its all-out value. Finally, the ECECT is used to measure lift-off in a range of approximately 1 mm to 5 mm, and the performance of the proposed method in non-linear cracks is assessed.
  13. Rifai D, Abdalla AN, Razali R, Ali K, Faraj MA
    Sensors (Basel), 2017 Mar 13;17(3).
    PMID: 28335399 DOI: 10.3390/s17030579
    The use of the eddy current technique (ECT) for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT) use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR) sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM). The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient.
  14. Hoque M, Pradhan B, Ahmed N, Alamri A
    Sensors (Basel), 2021 Oct 18;21(20).
    PMID: 34696109 DOI: 10.3390/s21206896
    In Australia, droughts are recurring events that tremendously affect environmental, agricultural and socio-economic activities. Southern Queensland is one of the most drought-prone regions in Australia. Consequently, a comprehensive drought vulnerability mapping is essential to generate a drought vulnerability map that can help develop and implement drought mitigation strategies. The study aimed to prepare a comprehensive drought vulnerability map that combines drought categories using geospatial techniques and to assess the spatial extent of the vulnerability of droughts in southern Queensland. A total of 14 drought-influencing criteria were selected for three drought categories, specifically, meteorological, hydrological and agricultural. The specific criteria spatial layers were prepared and weighted using the fuzzy analytical hierarchy process. Individual categories of drought vulnerability maps were prepared from their specific indices. Finally, the overall drought vulnerability map was generated by combining the indices using spatial analysis. Results revealed that approximately 79.60% of the southern Queensland region is moderately to extremely vulnerable to drought. The findings of this study were validated successfully through the receiver operating characteristics curve (ROC) and the area under the curve (AUC) approach using previous historical drought records. Results can be helpful for decision makers to develop and apply proactive drought mitigation strategies.
  15. Subramaniam M, In LL, Kumar A, Ahmed N, Nagoor NH
    Sci Rep, 2016;6:19833.
    PMID: 26817684 DOI: 10.1038/srep19833
    Mycobacterium indicus pranii (MIP) is a non-pathogenic mycobacterium, which has been tested on several cancer types like lung and bladder where tumour regression and complete recovery was observed. In discovering the potential cytotoxic elements, a preliminary test was carried out using four different fractions consisting of live bacteria, culture supernatant, heat killed bacteria and heat killed culture supernatant of MIP against two human cancer cells A549 and CaSki by 3-(4,5-dimethyl thiazol)-2,5-diphenyl tetrazolium bromide (MTT) assay. Apoptosis was investigated in MCF-7 and ORL-115 cancer cells by poly-(ADP-ribose) polymerase (PARP) and DNA fragmentation assays. Among four MIP fractions, only heat killed MIP fraction (HKB) showed significant cytotoxicity in various cancer cells with inhibitory concentration, IC50 in the range 5.6-35.0 μl/(1.0 × 10(6) MIP cells/ml), while cytotoxicity effects were not observed in the remaining fractions. HKB did not show cytotoxic effects on non-cancerous cells contrary to cancerous cells, suggesting its safe usage and ability to differentially recognize between these cells. Evaluation on PARP assay further suggested that cytotoxicity in cancer cells were potentially induced via caspase-mediated apoptosis. The cytotoxic and apoptotic effects of MIP HKB have indicated that this fraction can be a good candidate to further identify effective anti-cancer agents.
  16. Munksgaard NC, Kurita N, Sánchez-Murillo R, Ahmed N, Araguas L, Balachew DL, et al.
    Sci Rep, 2019 10 08;9(1):14419.
    PMID: 31595004 DOI: 10.1038/s41598-019-50973-9
    We present precipitation isotope data (δ2H and δ18O values) from 19 stations across the tropics collected from 2012 to 2017 under the Coordinated Research Project F31004 sponsored by the International Atomic Energy Agency. Rainfall samples were collected daily and analysed for stable isotopic ratios of oxygen and hydrogen by participating laboratories following a common analytical framework. We also calculated daily mean stratiform rainfall area fractions around each station over an area of 5° x 5° longitude/latitude based on TRMM/GPM satellite data. Isotope time series, along with information on rainfall amount and stratiform/convective proportions provide a valuable tool for rainfall characterisation and to improve the ability of isotope-enabled Global Circulation Models to predict variability and availability of inputs to fresh water resources across the tropics.
  17. Taha M, Rahim F, Khan AA, Anouar EH, Ahmed N, Shah SAA, et al.
    Sci Rep, 2020 05 14;10(1):7969.
    PMID: 32409737 DOI: 10.1038/s41598-020-64729-3
    The current study describes synthesis of diindolylmethane (DIM) derivatives based-thiadiazole as a new class of urease inhibitors. Diindolylmethane is natural product alkaloid reported to use in medicinal chemistry extensively. Diindolylmethane-based-thiadiazole analogs (1-18) were synthesized and characterized by various spectroscopic techniques 1HNMR, 13C-NMR, EI-MS and evaluated for urease (jack bean urease) inhibitory potential. All compounds showed excellent to moderate inhibitory potential having IC50 value within the range of 0.50 ± 0.01 to 33.20 ± 1.20 µM compared with the standard thiourea (21.60 ± 0.70 µM). Compound 8 (IC50 = 0.50 ± 0.01 µM) was the most potent inhibitor amongst all derivatives. Structure-activity relationships have been established for all compounds. The key binding interactions of most active compounds with enzyme were confirmed through molecular docking studies.
  18. Ahmed N, Siow KS, Wee MFMR, Patra A
    Sci Rep, 2023 Jan 30;13(1):1675.
    PMID: 36717647 DOI: 10.1038/s41598-023-28811-w
    Cold plasma (low pressure) technology has been effectively used to boost the germination and growth of various crops in recent decades. The durability of these plasma-treated seeds is essential because of the need to store and distribute the seeds at different locations. However, these ageing effects are often not ascertained and reported because germination and related tests are carried out within a short time after the plasma-treatment. This research aims to fill that knowledge gap by subjecting three different types of seeds (and precursors): Bambara groundnuts (water), chilli (oxygen), and papaya (oxygen) to cold plasma-treatment. Common mechanisms found for these diverse seed types and treatment conditions were the physical and chemical changes induced by the physical etching and the cold plasma on the seeds and subsequent oxidation, which promoted germination and growth. The high glass transition temperature of the lignin-cellulose prevented any physical restructuring of the surfaces while maintaining the chemical changes to continue to promote the seeds germination and growth. These changes were monitored over 60 days of ageing using water contact angle (WCA), water uptake, electrical conductivity, field emission scanning electron microscopy (FE-SEM) and X-ray photoelectron spectroscopy (XPS). The vacuum effect was also investigated to separate its effect from cold plasma (low pressure). This finding offers a framework for determining how long agricultural seeds that have received plasma treatment can be used. Additionally, there is a need to transfer this research from the lab to the field. Once the impact of plasma treatment on seeds has been estimated, it will be simple to do so.
  19. Sheikh NA, Ching DLC, Khan I, Sakidin HB, Jamil M, Khalid HU, et al.
    Sci Rep, 2021 Aug 09;11(1):16117.
    PMID: 34373521 DOI: 10.1038/s41598-021-95528-z
    The present work used fractional model of Casson fluid by utilizing a generalized Fourier's Law to construct Caputo Fractional model. A porous medium containing nanofluid flowing in a channel is considered with free convection and electrical conduction. A novel transformation is applied for energy equation and then solved by using integral transforms, combinedly, the Fourier and Laplace transformations. The results are shown in form of Mittag-Leffler function. The influence of physical parameters have been presented in graphs and values in tables are discussed in this work. The results reveal that heat transfer increases with increasing values of the volume fraction of nanoparticles, while the velocity of the nanofluid decreases with the increasing values of volume fraction of these particles.
  20. Daraz A, Alrajhi H, Basit A, Afzal AR, Alahmadi ANM, Khan IA
    Sci Rep, 2024 Apr 24;14(1):9400.
    PMID: 38658673 DOI: 10.1038/s41598-024-60028-3
    Maintaining a power balance between generation and demand is generally acknowledged as being essential to maintaining a system frequency within reasonable bounds. This is especially important for linked renewable-based hybrid power systems (HPS), where disruptions are more likely to occur. This paper suggests a prominent modified "Fractional order-proportional-integral with double derivative (FOPIDD2) controller" as an innovative HPS controller in order to navigate these obstacles. The recommended control approach has been validated in power systems including wind, reheat thermal, solar, and hydro generating, as well as capacitive energy storage and electric vehicle. The improved controller's performance is evaluated by comparing it to regular FOPID, PID, and PIDD2 controllers. Furthermore, the gains of the newly structured FOPIDD2 controller are optimized using a newly intended algorithm terms as squid game optimizer (SGO). The controller's performance is compared to benchmarks such as the grey wolf optimizer (GWO) and jellyfish search optimization. By comparing performance characteristics such as maximum frequency undershoot/overshoot, and steadying time, the SGO-FOPIDD2 controller outperforms the other techniques. The suggested SGO optimized FOPIDD2 controller was analyzed and validated for its ability to withstand the influence of power system parameter uncertainties under various loading scenarios and situations. Without any complicated design, the results show that the new controller can work steadily and regulate frequency with an appropriate controller coefficient.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links