Displaying publications 1 - 20 of 76 in total

Abstract:
Sort:
  1. Rahman AY, Usharraj AO, Misra BB, Thottathil GP, Jayasekaran K, Feng Y, et al.
    BMC Genomics, 2013;14:75.
    PMID: 23375136 DOI: 10.1186/1471-2164-14-75
    Hevea brasiliensis, a member of the Euphorbiaceae family, is the major commercial source of natural rubber (NR). NR is a latex polymer with high elasticity, flexibility, and resilience that has played a critical role in the world economy since 1876.
  2. Shah N, Khan A, Ali R, Marimuthu K, Uddin MN, Rizwan M, et al.
    Biomed Res Int, 2020;2020:6185231.
    PMID: 32382561 DOI: 10.1155/2020/6185231
    Health and environmental problems arising from metals present in the aquatic ecosystem are very well known. The present study investigated toxicological effects of LC15 of metals such as copper, chromium, and lead for 24, 48, 72, and 96 h on hematological indices, RBC nucleus and cell morphology, and gill and muscle tissues of grass carp (Ctenopharyngodon idella). Experimental dose concentrations of copper were 1.5, 1.4, 1.2, and 1 mgL-1. Similarly, dose concentrations of chromium were 25.5, 22.5, 20, and 18 mgL-1 while those of lead were 250, 235, 225, and 216 mgL-1, respectively. Maximum decrease in the concentration of Hb, RBCs, and monocytes was observed against chromium, while maximum increase in the concentration of lymphocytes was reported against lead. Abnormalities such as single and double micronuclei, deformed nucleus, nuclear shift, irregular nucleus, deformed cells, microcyte cells, and vacuolated and swollen cells were observed. Gill tissues absorbed maximum concentration of lead followed by chromium and copper. Muscle tissues also absorbed maximum concentration of lead followed by chromium and copper, respectively. Histological alterations such as epithelial lifting, interlamellar spaces, club gill filaments, gill bridging, curling filaments, swelling and fusion of cells, irregular cells, destruction of epithelial cells, cellular necrosis, and inflammatory cells were observed in gill tissues while inflammation and necrosis of muscle fibers, degeneration of muscle fibers, edema of muscle bundles, zig-zag of muscle fibers, and lesions were observed in muscle tissues of fish exposed with different doses of these heavy metals, indicating the toxicity of metals to aquatic fauna as well as to human being via food chain.
  3. Kausar H, Sariah M, Saud HM, Alam MZ, Ismail MR
    Biodegradation, 2011 Apr;22(2):367-75.
    PMID: 20803236 DOI: 10.1007/s10532-010-9407-3
    Rice straw is produced as a by-product from rice cultivation, which is composed largely of lignocellulosic materials amenable to general biodegradation. Lignocellulolytic actinobacteria can be used as a potential agent for rapid composting of bulky rice straw. Twenty-five actinobacteria isolates were isolated from various in situ and in vitro rice straw compost sources. Isolates A2, A4, A7, A9 and A24 were selected through enzymatic degradation of starch, cellulose and lignin followed by the screening for their adaptability on rice straw powder amended media. The best adapted isolate (A7) was identified as Micromonospora carbonacea. It was able to degrade cellulose, hemicelluloses and carbon significantly (P ≤ 0.05) over the control. C/N ratio was reduced to 18.1 from an initial value of 29.3 in 6 weeks of composting thus having the potential to be used in large scale composting of rice straw.
  4. Molla AH, Fakhru'l-Razi A, Abd-Aziz S, Hanafi MM, Roychoudhury PK, Alam MZ
    Bioresour Technol, 2002 Dec;85(3):263-72.
    PMID: 12365494
    Twenty seven filamentous fungal strains representing five genera; Aspergillus, Penicillium, Trichoderma, Myriodontium and Pleurotus were isolated from four sources; domestic wastewater sludge cake (SC) from IWK (Indah Water Konsortium) wastewater treatment plant, palm oil mill effluent compost from Sri Ulu palm Oil Processing Mill, compost of plant debris, and fungal fruiting bodies from a rotten wood stump. Thirty-three strains/isolates were tested for their ability to convert domestic wastewater sludge into compost by assessing biomass production and growth rate on sludge enriched media. The strains/isolates Aspergillus niger, SS-T2008, WW-P1003 and RW-P1 512 produced the highest dry biomass at higher sludge supplemented culture media from their respective group (Aspergillus, Trichoderma, Penicillium and Basidiomycetes, respectively). This implied these strains are better adapted for growth at higher sludge rich substances, and subsequently may be efficient in bioconversion/biodegradation of sludge. The fungi isolated from ecological closely related sources were more amendable to adaptation in a sludge rich culture media.
  5. Ghani U, Syed SA, Aljunidel S, Khan AA, Nur-E-Alam M, AlNoshan A, et al.
    Chem Biodivers, 2024 Feb 23.
    PMID: 38393939 DOI: 10.1002/cbdv.202301399
    Imidazoles and phenylthiazoles are an important class of heterocycles that demonstrate a wide range of biological activities against various types of cancers, diabetes mellitus and pathogenic microorganisms. The heterocyclic structure having oxothiazolidine moiety is an important scaffold present in various drugs, with potential for enzyme inhibition. In an effort to discover new heterocyclic compounds, we synthesized 26 new 4,5-diphenyl-1H-imidazole, phenylthiazole, and oxothiazolidine heterocyclic analogues that demonstrated potent α-glucosidase inhibition and anticancer activities. Majority of the compounds noncompetitively inhibited α-glucosidase except for two that exhibited competitive inhibition of the enzyme. Docking results suggested that the noncompetitive inhibitors bind to an apparent allosteric site on the enzyme located in the vicinity of the active site. Additionally, the analogues also exhibited significant activity against various types of cancers including non-small lung cancer. Since tubulin protein plays an important role in the pathogenesis of non-small lung cancer, molecular docking with one of the target compounds provided important clues to its binding mode. The current work on imidazoles and phenylthiazole derivatives bears importance for designing of new antidiabetic and anticancer drugs.
  6. Alam MA, Juraimi AS, Rafii MY, Hamid AA, Arolu IW, Abdul Latif M
    C. R. Biol., 2015 Jan;338(1):1-11.
    PMID: 25468001 DOI: 10.1016/j.crvi.2014.10.007
    Genetic diversity and relationships among 45 collected purslane accessions were evaluated using ISSR markers. The 28 primers gave a total of 167 bands, among which 163 were polymorphic (97.6%). The genetic diversity as estimated by Shannon's information index was 0.513, revealing a quite high level of genetic diversity in the germplasm. The average number of observed allele, effective allele, expected heterozygosity, polymorphic information content (PIC) and Nei's index were 5.96, 1.59, 0.43, 0.35 and 0.35, respectively. The UPGMA dendrogram based on Nei's genetic distance grouped the whole germplasm into 7 distinct clusters. The analysis of molecular variance (AMOVA) revealed that 89% of total variation occurred within population, while 11% were found among populations. Based on the constructed dendrogram using ISSR markers those accessions that are far from each other by virtue of genetic origin and diversity index (like Ac1 and Ac42; Ac19 and Ac45; Ac9 and Ac23; Ac18 and A25; Ac24 and Ac18) are strongly recommended to select as parent for future breeding program to develop high yielding and stress tolerant purslane variety in contribution to global food security.
  7. Mastor NN, Subbiah VK, Bakar WNWA, Begum K, Alam MJ, Hoque MZ
    Data Brief, 2020 Dec;33:106370.
    PMID: 33102652 DOI: 10.1016/j.dib.2020.106370
    Enterococcus gallinarum is a gram positive facultatively anaerobic bacteria that is typically found in mammalian intestinal tracts. It is generally not considered pathogenic to humans and is rarely reported. Here, we present the draft genome sequence data of Enterococcus gallinarum strain EGR748 isolated from a human clinical sample, and sequenced using the Illumina HiSeq 4000 system. The estimated whole genome size of the strain was 3,730,000 bp with a G + C content of 40.43%. The de novo assembly of the genome generated 55 contigs with an N50 of 208,509 bp. In addition, the Maximum Likelihood phylogenetic analysis based on the 16S rRNA sequence data accurately clustered EGR748 with other E. gallinarum strains. The data may be useful to demonstrate the capacity of this enterococcal species becoming the causal agents of nosocomial blood-stream infections. The genome dataset has been deposited at DDBJ/ENA/GenBank under the accession number JAABOR000000000.
  8. Ahmad P, Vincent Abbott P, Khursheed Alam M, Ahmed Asif J
    Dent Traumatol, 2020 Apr;36(2):89-99.
    PMID: 31800153 DOI: 10.1111/edt.12534
    BACKGROUND/AIMS: The impact of a scientific article in its respective field is reflected by its citation count. The purpose of this review was to conduct a citation analysis in order to identify and analyze the top 50 most cited articles published in Dental Traumatology since its inception in order to highlight the contribution of the journal to the field of Dental Traumatology.

    METHODS: Elsevier's Scopus was used to search and analyze the 50 most frequently cited scientific papers. After the screening process, two reviewers arranged the articles in a descending order based on their citation counts. Each article was then cross-matched with Google Scholar. The articles were analyzed, and information including citation counts, citation density, publication year, authorship, contributing institutions and countries, article topic, study design, and keywords was extracted.

    RESULTS: The literature search identified 2421 articles. The citation counts of the 50 selected articles varied from 117 to 580 (Scopus) and 206 to 1130 (Google Scholar). The year in which most top 50 articles were published was 2002 (n = 5). Among 105 authors, the greatest contribution was made by JO Andreasen (n = 12). Most of the articles originated from the United States (n = 12) with the greatest contributions from the University Hospital (Rigshospitalet), Copenhagen, Denmark (n = 6). Original research article was the most frequent study design (n = 34). The majority of the top 50 articles were focused on traumatic dental injuries. Among 131 unique key words, root resorption (n = 6) was the most frequently used. A non-significant correlation occurred between citation count (correlation coefficient = 0.127, P = .378), citation density (correlation coefficient = 0.654, P = 2.493), and publication age.

    CONCLUSIONS: This study identified the top 50 most cited articles published in this journal in the specialty of Dental Traumatology. The publication year of an article was not significantly associated with citation count nor citation density.

  9. Haque MA, Jewel MAS, Akhi MM, Atique U, Paul AK, Iqbal S, et al.
    Environ Monit Assess, 2021 Oct 08;193(11):704.
    PMID: 34623504 DOI: 10.1007/s10661-021-09500-5
    Functional classification of phytoplankton could be a valuable tool in water quality monitoring in the eutrophic riverine ecosystems. This study is novel from the Bangladeshi perspective. In this study, phytoplankton cell density and diversity were studied with particular reference to the functional groups (FGs) approach during pre-monsoon, monsoon, and post-monsoon at four sampling stations in Karatoya River, Bangladesh. A total of 54 phytoplankton species were recorded under four classes, viz. Chlorophyceae (21 species) Cyanophyceae (16 species), Bacillariophyceae (15 species), and Euglenophyceae (2 species). A significantly higher total cell density of phytoplankton was detected during the pre-monsoon season (24.20 × 103 cells/l), while the lowest in monsoon (9.43 × 103 cells/l). The Shannon-Wiener diversity index varied significantly (F = 16.109, P = 000), with the highest value recorded during the post-monsoon season. Analysis of similarity (ANOSIM) identified significant variations among the three seasons (P M/MP/X1 was considered the most abundant FG in the Karatoya River. FGs of the Karatoya River were influenced mainly by the nutrients (PO4-P and NO3-N) enrichments. As a novel investigation on FGs of phytoplankton in Bangladesh, this study recommends additional surveys in other rivers and floodplains to improve our understanding of phytoplankton diversity and functional groups.
  10. Siraz MMM, Roy D, Dewan MJ, Alam MS, A M J, Rashid MB, et al.
    Environ Monit Assess, 2023 Feb 10;195(3):382.
    PMID: 36759352 DOI: 10.1007/s10661-023-10921-7
    This is the first attempt in the world to depict the vertical distribution of radionuclides in the soil samples along several heights (900 feet, 1550 feet, and 1650 feet) of Marayon Tong hill in the Chittagong Hill Tracts, Bandarban by HPGe gamma-ray spectrometry. The average activity concentrations of 232Th, 226Ra, and 40K were found to be 37.15 ± 3.76 Bqkg-1, 19.69 ± 2.15 Bqkg-1, and 347.82 ± 24.50 Bqkg-1, respectively, where in most cases, 232Th exceeded the world average value of 30 Bqkg-1. According to soil characterization, soils ranged from slightly acidic to moderately acidic, with low soluble salts. The radium equivalent activity, outdoor and indoor absorbed dose rate, external and internal hazard indices, external and internal effective dose rates, gamma level index, and excess lifetime cancer risk were evaluated and found to be below the recommended or world average values; but a measurable activity of 137Cs was found at soils collected from ground level and at an altitude of 1550 feet, which possibly arises from the nuclear fallout. The evaluation of cumulative radiation doses to the inhabitants via periodic measurement is recommended due to the elevated levels of 232Th.This pioneering work in mapping the vertical distribution of naturally occurring radioactive materials (NORMs) can be an essential factual baseline data for the scientific community that may be used to evaluate the variation in NORMs in the future, especially after the commissioning of the Rooppur Nuclear Power Plant in Bangladesh in 2024.
  11. Siraz MMM, Kamal MH, Khan ZH, Alam MS, Al Mahmud J, Rashid MB, et al.
    Environ Monit Assess, 2023 Aug 10;195(9):1028.
    PMID: 37558890 DOI: 10.1007/s10661-023-11636-5
    This study marks the first-ever assessment of radiological hazards linked to the sands and rocks of Patuartek Sea Beach, situated along one of the world's longest sea beaches in Cox' Bazar of Bangladesh. Through the utilization of an HPGe detector, a comprehensive analysis of the activity concentrations of 226Ra, 232Th, and 40 K was conducted, and their activity ranged from 7 to 23 Bq/kg, 9-58 Bq/kg, and 172-340 Bq/kg, respectively, in soils, and 19-24 Bq/kg, 27-39 Bq/kg, and 340-410 Bq/kg, respectively, in rocks. Some sand samples exhibited elevated levels of 232Th, while the rock samples displayed higher levels of 40 K compared to the global average. The radiological hazard parameters were assessed, and no values surpassed the recommended limits set by several international organizations. Hence, the sands and rocks of Patuartek sea beach pose no significant radiological risk to the residents or tourists. The findings of this study provide crucial insights for the development of a radiological baseline map in the country, which is important due to the commissioning of the country's first nuclear power plant Rooppur Nuclear Power Plant. The data may also stimulate interest in the rare-earth minerals present in the area, which is important for the electronics industry, thorium-based nuclear fuel cycles.
  12. Siraz MMM, Das SK, Mondol MS, Alam MS, Al Mahmud J, Rashid MB, et al.
    Environ Monit Assess, 2023 Apr 17;195(5):579.
    PMID: 37067680 DOI: 10.1007/s10661-023-11223-8
    Bangladesh is a rapidly developing country, which is vulnerable to various types of pollution due to the large-scale industrial and associated human activities that might potentially affect the locally harvested foodstuffs. Therefore, the transfer factor is an essential tool to assess the safety of foodstuffs due to the presence of natural radioactivity in environmental matrix and/or strata. This is a first study of its kind conducted in a well-known region for mango farming in Bangladesh, measuring the uptake of naturally occurring radioactive materials (NORMs) by grass and mango from soil to assess the ingestion doses to humans. The HPGe gamma-ray detector was used to determine the concentrations of NORMs in samples of soil (20), grass (10), and mango (10), which were then used to calculate the transfer factors of soil to grass and soil to mango. Average activity concentrations of 226Ra, 232Th, and 40K in associated soil samples (47.27 ± 4.10, 64.49 ± 4.32, 421.60 ± 28.85) of mango and 226Ra and 232Th in associated soil samples (45.07 ± 3.93, 52.17 ± 3.95) of grass were found to exceed the world average values. The average transfer factors (TFs) for mango were obtained in the order of 40K(0.80) > 226Ra (0.61) > 232Th (0.31), and for grass, it shows the order of 40K (0.78) > 232Th (0.64) > 226Ra (0.56). However, a few values (3 mango samples and 3 grass samples) of the estimated TFs exceeded the recommended limits. Moreover, Bangladesh lacks the transfer factors for most of the food crops; therefore, calculation of TFs in the major agricultural products is required all over Bangladesh, especially the foodstuffs produced near the Rooppur Nuclear Power Plant, which is scheduled to be commissioned in 2023.
  13. Siraz MMM, Al Mahmud J, Alam MS, Rashid MB, Hossain Z, Osman H, et al.
    Environ Monit Assess, 2024 Jan 23;196(2):192.
    PMID: 38263472 DOI: 10.1007/s10661-024-12328-4
    Miners, factory workers, traders, end-users, and foodstuff consumers all run the risk of encountering health hazards derived from the presence of elevated levels of radiation in fertilizers, as these groups often come into direct or indirect contact with fertilizers as well as raw materials throughout various linked processes such as mineral extractions, fertilizer production, agricultural practices. A total of 30 samples of various kinds of fertilizer produced in different factories in Dhaka megacity were analyzed to quantify the concentrations of primordial radionuclides using HPGe detector. Among the analyzed samples, average (range) concentration of 40K was found to be 9920 ± 1091 (8700 ± 957-11,500 ± 1265), 9100 ± 1001 (8600 ± 946-9600 ± 1056), 2565 ± 282 (2540 ± 279-2590 ± 285), and 3560 ± 392 (2620 ± 288-4500 ± 495) Bq/kg in the samples of Muriate of Potash Fertilizer, Sulphate of Potash Fertilizer, Humic Acid Fertilizer, and NPKS Fertilizer, respectively. Elevated concentration of 226Ra was found in Triple Super Phosphate Fertilizer with a mean (range) of 335 ± 37 (290 ± 32-380 ± 42) Bq/kg. The higher activity of 40K can be linked to the greater levels of elemental potassium in phosphate fertilizer. Elevated concentrations of radionuclides may also result from variations in chemical processes as well as the local geology of the mining areas where the raw materials were extracted for fertilizer production. Numerous fertilizer brands surpass prescribed limits for various hazardous parameters, presenting significant health risks to factory workers, farmers, and consumers of agricultural products. This study provides baseline information on the radioactivity of fertilizers, which could be used to develop mitigation methods, establish national fertilizer usage limits, justify regulatory frameworks, and raise public awareness of fertilizer overuse. The findings of the study could potentially help to explore the impact of fertilizer on the food chain.
  14. Islam MS, Nur-E-Alam M, Iqbal MA, Khan MB, Mamun SA, Miah MY, et al.
    Environ Res, 2024 Feb 24.
    PMID: 38408626 DOI: 10.1016/j.envres.2024.118551
    Bangladesh is currently experiencing significant infrastructural development in road networking system through the construction or reconstruction of multiple roads and highways. Consequently, there is a rise in traffic intensity on roads and highways, along with a significant contamination of adjacent agricultural soils with heavy metals. The purpose of this study was to evaluate the ecological risk, health risk and the abundance of seven heavy metals (Cu, Mn, Pb, Cd, Cr, As, and Ni) in three distance gradients (0, 300, and 500 m) of agricultural soil along the Dhaka-Chattogram highway. The concentration of heavy metals was measured with an Atomic Absorption Spectrophotometer (AAS) on a total of 36 soil samples that were taken from 12 different sampling sites. Based on the findings, Cd had a high contamination factor for all distance gradients, whereas Cr had a moderate contamination factor in 67% of the study areas. According to the Pollution Load Index (PLI), Cd, Cr, and Pb were the predominant pollutants. Principal component analysis (PCA) result shows these metals mainly came from anthropogenic sources. The considerable positive correlations between Cu-Pb, Cu-Cd, Pb-Cd, and Cr-Ni all pointed to shared anthropogenic origins. As per Potential Ecological Risk Assessment (PERI) analysis, Pb, Cd, Cr, and Ni each contribute significantly and pose a moderate threat. The Target Hazard Quotient (THQ) values for all pathways of exposure to Pb and Cr in soils were more than 1, which would pose a significant risk to human health in the following order: THQadult female > THQadult male > THQchildren. This study will help to evaluate the human health risk and develop a better understanding of the heavy metal abundance scenario in the agricultural fields adjacent to this highway.
  15. Abioye KJ, Harun NY, Sufian S, Yusuf M, Jagaba AH, Waqas S, et al.
    Environ Res, 2024 Apr 01;246:118027.
    PMID: 38159670 DOI: 10.1016/j.envres.2023.118027
    The study explores co-gasification of palm oil decanter cake and alum sludge, investigating the correlation between input variables and syngas production. Operating variables, including temperature (700-900 °C), air flow rate (10-30 mL/min), and particle size (0.25-2 mm), were optimized to maximize syngas production using air as the gasification agent in a fixed bed horizontal tube furnace reactor. Response Surface Methodology with the Box-Behnken design was used employed for optimization. Fourier Transformed Infra-Red (FTIR) and Field Emission Scanning Electron Microscopic (FESEM) analyses were used to analyze the char residue. The results showed that temperature and particle size have positive effects, while air flow rate has a negative effect on the syngas yield. The optimal CO + H2 composition of 39.48 vol% was achieved at 900 °C, 10 mL/min air flow rate, and 2 mm particle size. FTIR analysis confirmed the absence of C─Cl bonds and the emergence of Si─O bonds in the optimized char residue, distinguishing it from the raw sample. FESEM analysis revealed a rich porous structure in the optimized char residue, with the presence of calcium carbonate (CaCO3) and aluminosilicates. These findings provide valuable insights for sustainable energy production from biomass wastes.
  16. Shakib M, Yumei H, Rauf A, Alam M, Murshed M, Mahmood H
    Environ Sci Pollut Res Int, 2022 Jan;29(3):3808-3825.
    PMID: 34402005 DOI: 10.1007/s11356-021-15860-9
    The Belt and Road Initiative (BRI) is an ambitious development project initiated by the Chinese government to foster economic progress worldwide. In this regard, this study aims to investigate the dynamics of energy, economy, and environment among 42 BRI developing countries using an annual frequency panel dataset from 1995 to 2019. The major findings from the econometric analyses revealed that higher levels of energy consumption, economic growth, population growth rate, and FDI inflows exhibit adverse environmental consequences by boosting the CO2 emission figures of the selected developing BRI member nations. However, it is interesting to observe that exploiting renewable energy sources, which are relatively cleaner compared to the traditionally-consumed fossil fuels, and fostering agricultural sector development can significantly improve environmental well-being by curbing the emission levels further. On the other hand, financial development is found to be ineffective in explaining the variations in the CO2 emission figures of the selected countries. Besides, the causality analysis shows that higher energy consumption, FDI inflows, and agricultural development cause environmental pollution by boosting CO2 emissions. However, economic growth, technology development, financial progress, and renewable energy consumption are evidenced to exhibit bidirectional causal associations with CO2 emissions. In line with these findings, several relevant policies can be recommended for the BRI to be environmentally sustainable.
  17. Mok SC, Teh AH, Saito JA, Najimudin N, Alam M
    Enzyme Microb Technol, 2013 Jun 10;53(1):46-54.
    PMID: 23683704 DOI: 10.1016/j.enzmictec.2013.03.009
    A truncated form of an α-amylase, GTA, from thermophilic Geobacillus thermoleovorans CCB_US3_UF5 was biochemically and structurally characterized. The recombinant GTA, which lacked both the N- and C-terminal transmembrane regions, functioned optimally at 70°C and pH 6.0. While enzyme activity was not enhanced by the addition of CaCl2, GTA's thermostability was significantly improved in the presence of CaCl2. The structure, in complex with an acarbose-derived pseudo-hexasaccharide, consists of the typical three domains and binds one Ca(2+) ion. This Ca(2+) ion was strongly bound and not chelated by EDTA. A predicted second Ca(2+)-binding site, however, was disordered. With limited subsites, two novel substrate-binding residues, Y147 and Y182, may help increase substrate affinity. No distinct starch-binding domain is present, although two regions rich in aromatic residues have been observed. GTA, with a smaller domain B and several shorter loops compared to other α-amylases, has one of the most compact α-amylase folds that may contribute greatly to its tight Ca(2+) binding and thermostability.
  18. Teh AH, Saito JA, Baharuddin A, Tuckerman JR, Newhouse JS, Kanbe M, et al.
    FEBS Lett., 2011 Oct 20;585(20):3250-8.
    PMID: 21925500 DOI: 10.1016/j.febslet.2011.09.002
    Hell's Gate globin I (HGbI), a heme-containing protein structurally homologous to mammalian neuroglobins, has been identified from an acidophilic and thermophilic obligate methanotroph, Methylacidiphilum infernorum. HGbI has very high affinity for O(2) and shows barely detectable autoxidation in the pH range of 5.2-8.6 and temperature range of 25-50°C. Examination of the heme pocket by X-ray crystallography and molecular dynamics showed that conformational movements of Tyr29(B10) and Gln50(E7), as well as structural flexibility of the GH loop and H-helix, may play a role in modulating its ligand binding behavior. Bacterial HGbI's unique resistance to the sort of extreme acidity that would extract heme from any other hemoglobin makes it an ideal candidate for comparative structure-function studies of the expanding globin superfamily.
  19. Amirul Alam M, Juraimi AS, Rafii MY, Hamid AA, Aslani F, Alam MZ
    Food Chem, 2015 Feb 15;169:439-47.
    PMID: 25236249 DOI: 10.1016/j.foodchem.2014.08.019
    Dry matter (DM), total phenolics, flavonoids, carotenoid contents, and antioxidant activity of 12 purslane accessions were investigated against five levels of salinity (0, 8, 16, 24 and 32dSm(-1)). In untreated plants, the DM contents ranged between 8.0-23.4g/pot; total phenolics contents (TPC) between 0.96-9.12mgGAEg(-1)DW; total flavonoid contents (TFC) between 0.15-1.44mgREg(-1)DW; and total carotenoid contents (TCC) between 0.52BCEg(-1)DW. While FRAP activity ranged from 8.64-104.21mgTEg(-1)DW (about 12-fold) and DPPH activity between 2.50-3.30mgmL(-1) IC50 value. Different levels of salinity treatment resulted in 8-35% increases in TPC; about 35% increase in TFC; and 18-35% increases in FRAP activity. Purslane accessions Ac4, Ac5, Ac6 and Ac8 possessed potentials for salinity-induced augmented production of bioactive compounds which in turn can be harnessed for possible human health benefits.
  20. Tan SA, Goya L, Ramanathan S, Sulaiman SF, Alam M, Navaratnam V
    Food Res Int, 2014 Oct;64:387-395.
    PMID: 30011665 DOI: 10.1016/j.foodres.2014.06.040
    Extract from papaya leaves, a waste material from fruit farms in Malaysia was previously reported to possess remarkable antioxidative activities. In this study, papaya leaf extract was separated into fractions of different polarities [petroleum ether (PE), ethyl acetate (EA), n-butanol (NB) and water (W) fractions]. The aim of this research was to determine the most active fraction in terms of its chemopreventive effects towards oxidative stress and the chemical constituents involved. The cytoprotective nature of the papaya fractions was observed against t-BOOH-induced oxidative stress on HepG2 liver cell line. ROS assay indicated that only PE and EA effectively reduced the increment of radical due to the pro-oxidant, t-BOOH. Nevertheless, PE was a stronger ROS scavenger by demonstrating ROS reducing activity in a dose-dependent manner to the basal level. This fraction was also found to inhibit cell death caused by t-BOOH toxicity, attenuating lactate dehydrogenase enzyme leakage by more than 90% (p<0.05). In addition, gene expression of phase II antioxidant enzymes (hmox-1 and nqo-1) and their transcription factor (nrf-2) were shown to be upregulated upon PE treatment during a time-course study. A GC-MS fingerprint of the active fraction was subsequently obtained with standardization using the marker compound; α-tocopherol, a well known antioxidant. However, this pure compound was not as effective as its corresponding PE concentrations in ROS reduction. Hence, PE of papaya leaf extract was a strong antioxidant and cytoprotectant with tremendous potential to be harnessed into the next therapeutic remedy against oxidative stress of the liver.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links