Displaying publications 1 - 20 of 81 in total

Abstract:
Sort:
  1. Kee CH, Ariffin A, Awang K, Takeya K, Morita H, Hussain SI, et al.
    Org Biomol Chem, 2010 Dec 21;8(24):5646-60.
    PMID: 20941451 DOI: 10.1039/c0ob00296h
    The syntheses of fourteen unusual o-carboxamido stilbenes by the Heck protocol revealed surprising complexity related to intriguing substituent effects with mechanistic implications. The unexpected cytotoxic and chemopreventive properties also seem to be substituent dependent. For example, although stilbene 15d (with a 4-methoxy substituent) showed cytotoxicity on HT29 colon cancer cells with an IC(50) of 4.9 μM, the 3,4-dimethoxy derivative (15c) is inactive. It is interesting to observe that the 3,5-dimethoxy derivative (15e) showed remarkable chemopreventive activity in WRL-68 fetal hepatocytes, surpassing the gold standard, resveratrol. The resveratrol concentration needed to be 5 times higher than that of 15e to produce comparable elevation of NQO1.
  2. Gapil Tiamas S, Daressy F, Abou Samra A, Bignon J, Steinmetz V, Litaudon M, et al.
    Bioorg Med Chem Lett, 2020 04 01;30(7):127003.
    PMID: 32035700 DOI: 10.1016/j.bmcl.2020.127003
    A library of 26 novel carboxamides deriving from natural fislatifolic acid has been prepared. The synthetic strategy involved a bio-inspired Diels-Alder cycloaddition, followed by functionalisations of the carbonyl moiety. All the compounds were evaluated on Bcl-xL, Mcl-1 and Bcl-2 proteins. In this series of cyclohexenyl chalcone analogues, six compounds behaved as dual Bcl-xL/Mcl-1 inhibitors in micromolar range and one exhibited sub-micromolar affinities toward Mcl-1 and Bcl-2. The most potent compounds evaluated on A549 and MCF7 cancer cell lines showed moderate cytotoxicities.
  3. Nazarbahjat N, Nordin N, Abdullah Z, Abdulla MA, Yehye WA, Halim SN, et al.
    Molecules, 2014;19(8):11520-37.
    PMID: 25093989 DOI: 10.3390/molecules190811520
    New thiosemicarbazide derivatives 2-6 were synthesised by reacting 2-(ethylsulfanyl)benzohydrazide with various aryl isothiocyanates. The cyclisation of compounds 2-6 under reflux conditions in a basic medium (aqueous NaOH, 4 N) yielded compounds 7-11 that contain a 1,2,4-triazole ring. All of the synthesised compounds were screened for their antioxidant activities. Compounds 2, 3, and 7 showed better radical scavenging in a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, with IC50 values of 1.08, 0.22, and 0.74 µg/mL, respectively, compared to gallic acid (IC50, 1.2 µg/mL). Compound 3 also showed superior results in a ferric reducing antioxidant power (FRAP) assay (3054 µM/100 g) compared to those of ascorbic acid (1207 µM/100 g).
  4. Bradley DA, Zubair HT, Oresegun A, Louay GT, Ariffin A, Khandaker MU, et al.
    Appl Radiat Isot, 2018 Nov;141:176-181.
    PMID: 29673719 DOI: 10.1016/j.apradiso.2018.02.025
    In previous work we investigated the real-time radioluminescence (RL) yield of Ge-doped silica fibres and Al2O3 nanodot media, sensing electron- and x-ray energies and intensities at values familiarly obtained in external beam radiotherapy. The observation of an appreciable low-dose sensitivity has given rise to the realisation that there is strong potential for use of RL dosimetry in diagnostic radiology. Herein use has been made of P-doped silica optical fibre, 2 mm diameter, also including a 271 µm cylindrical doped core. With developing needs for versatile x-ray imaging dosimetry, preliminary investigations have been made covering the range of diagnostic x-ray tube potentials 30 kVp to 120 kVp, demonstrating linearity of RL with kVp as well as in terms of the current-time (mAs) product. RL yields also accord with the inverse-square law. Given typical radiographic-examination exposure durations from tens- to a few hundred milliseconds, particular value is found in the ability to record the influence of x-ray generator performance on the growth and decay of beam intensity, from initiation to termination.
  5. Yehye WA, Abdul Rahman N, Saad O, Ariffin A, Abd Hamid SB, Alhadi AA, et al.
    Molecules, 2016 Jun 28;21(7).
    PMID: 27367658 DOI: 10.3390/molecules21070847
    A new series of multipotent antioxidants (MPAOs), namely Schiff base-1,2,4-triazoles attached to the oxygen-derived free radical scavenging moiety butylated hydroxytoluene (BHT) were designed and subsequently synthesized. The structure-activity relationship (SAR) of the designed antioxidants was established alongside the prediction of activity spectra for substances (PASS). The antioxidant activities of the synthesized compounds 4-10 were tested by the DPPH bioassay. The synthesized compounds 4-10 inhibited stable DPPH free radicals at a level that is 10(-4) M more than the well-known standard antioxidant BHT. Compounds 8-10 with para-substituents were less active than compounds 4 and 5 with trimethoxy substituents compared to those with a second BHT moiety (compounds 6 and 7). With an IC50 of 46.13 ± 0.31 µM, compound 6 exhibited the most promising in vitro inhibition at 89%. Therefore, novel MPAOs containing active triazole rings, thioethers, Schiff bases, and BHT moieties are suggested as potential antioxidants for inhibiting oxidative stress processes and scavenging free radicals, hence, this combination of functions is anticipated to play a vital role in repairing cellular damage, preventing various human diseases and in medical therapeutic applications.
  6. Skhirtladze L, Keruckiene R, Bezvikonnyi O, Mahmoudi M, Volyniuk D, Leitonas K, et al.
    PMID: 37890326 DOI: 10.1016/j.saa.2023.123531
    Two compounds consisting of electron-accepting trifluoromethylphenyl moiety and electron-donating phenoxazine and phenothiazine moieties were designed and synthesized via Buchwald-Hartwig coupling reaction. Thermal, photophysical, and electrochemical properties of the compounds are discussed. Only compound with phenothiazine form molecular glass, with glass transition temperatures of 90 °C. The geometry and electronic characteristics of the compounds were substantiated within density functional theory (DFT). 10,10'-(2-(Trifluoromethyl)-1,4-phenylene)bis(10H-phenoxazine) shows efficient thermally activated delayed fluorescence with high spin-orbit coupling values. 10,10'-(2-(Trifluoromethyl)-1,4-phenylene)bis(10H-phenothiazine) as efficient room-temperature phosphor shows high oxygen sensitivity.
  7. Razali N, Mat Junit S, Ariffin A, Ramli NS, Abdul Aziz A
    PMID: 26683054 DOI: 10.1186/s12906-015-0963-2
    Tamarindus indica L. (T. indica) or locally known as "asam jawa" belongs to the family Leguminosae. T. indica seeds as by-products from the fruits were previously reported to contain high polyphenolic content. However, identification of their bioactive polyphenols using recent technologies is less well researched but nonetheless important. Hence, it was the aim of this study to provide further information on the polyphenolic content and antioxidant activities as well as to identify and quantify its bioactive polyphenols.
  8. Ariffin A, Rahman NA, Yehye WA, Alhadi AA, Kadir FA
    Eur J Med Chem, 2014 Nov 24;87:564-77.
    PMID: 25299680 DOI: 10.1016/j.ejmech.2014.10.001
    New multipotent antioxidants (MPAOs), namely 1,3,4-thiadiazoles and 1,2,4-triazoles bearing the well-known free radical scavenger butylated hydroxytoluene (BHT), were designed and synthesized using an acid-(base-) catalyzed intramolecular dehydrative cyclization reaction of the corresponding 1-acylthiosemicarbazides. The structure-activity relationship (SAR) of the designed antioxidants was performed along with the prediction of activity spectra for substances (PASS) training set. Experimental studies based on antioxidant activity using DPPH and lipid peroxidation assays verified the predictions obtained by the PASS-assisted design strategy. Compounds 4a-b, 5a-b and 6a-b showed an inhibition of stable DPPH free radicals at a 10(-4) M more than the well-known standard antioxidant BHT. Compounds with p-methoxy substituents (4b, 5b and 6b) were more active than o-methoxy substituents (4a, 5a and 6a). With an IC50 of 2.85 ± 1.09 μM, compound 6b exhibited the most promising in vitro inhibition of lipid peroxidation, inhibiting Fe(2+)-induced lipid peroxidation of essential oils derived from the egg yolk-based lipid-rich medium by 86.4%. The parameters for the drug-likeness of these BHT derivatives were also evaluated according to Lipinski's 'rule-of-five'. All of the BHT derivatives were found to violate one of Lipinski's parameters (Log P ≥ 5) even though they have been found to be soluble in protic solvents. The predictive TPSA and %ABS data allow for the conclusion that these compounds could have a good capacity for penetrating cell membranes. Therefore, these novel MPAOs containing lipophilic and hydrophilic groups can be proposed as potential antioxidants for tackling oxidative stress and lipid peroxidation processes.
  9. Yehye WA, Abdul Rahman N, Alhadi AA, Khaledi H, Weng NS, Ariffin A
    Molecules, 2012 Jun 25;17(7):7645-65.
    PMID: 22732881 DOI: 10.3390/molecules17077645
    A computer-aided predictions of antioxidant activities were performed with the Prediction Activity Spectra of Substances (PASS) program. Antioxidant activity of compounds 1, 3, 4 and 5 were studied using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and lipid peroxidation assays to verify the predictions obtained by the PASS program. Compounds 3 and 5 showed more inhibition of DPPH stable free radical at 10⁻⁴ M than the well-known standard antioxidant, butylated hydroxytoluene (BHT). Compound 5 exhibited promising in vitro inhibition of Fe²⁺-induced lipid peroxidation of the essential egg yolk as a lipid-rich medium (83.99%, IC₅₀ 16.07 ± 3.51 μM/mL) compared to α-tocopherol (α-TOH, 84.6%, IC₅₀ 5.6 ± 1.09 μM/mL). The parameters for drug-likeness of these BHT analogues were also evaluated according to the Lipinski’s “rule-of-five” (RO5). All the BHT analogues were found to violate one of the Lipinski’s parameters (LogP > 5), even though they have been found to be soluble in protic solvents. The predictive polar surface area (PSA) and absorption percent (% ABS) data allow us to conclude that they could have a good capacity for penetrating cell membranes. Therefore, one can propose these new multipotent antioxidants (MPAOs) as potential antioxidants for tackling oxidative stress and lipid peroxidation processes.
  10. Azmy SN, Sah SA, Shafie NJ, Ariffin A, Majid Z, Ismail MN, et al.
    Sci Rep, 2012;2:524.
    PMID: 22826802 DOI: 10.1038/srep00524
    Population surveys and species recognition for roosting bats are either based on capture, sight or optical-mechanical count methods. However, these methods are intrusive, are tedious and, at best, provide only statistical estimations. Here, we demonstrated the successful use of a terrestrial Light Detection and Ranging (LIDAR) laser scanner for remotely identifying and determining the exact population of roosting bats in caves. LIDAR accurately captured the 3D features of the roosting bats and their spatial distribution patterns in minimal light. The high-resolution model of the cave enabled an exact count of the visibly differentiated Hipposideros larvatus and their roosting pattern within the 3D topology of the cave. We anticipate that the development of LIDAR will open up new research possibilities by allowing researchers to study roosting behaviour within the topographical context of a cave's internal surface, thus facilitating rigorous quantitative characterisations of cave roosting behaviour.
  11. Saadi S, Ariffin AA, Ghazali HM, Miskandar MS, Abdulkarim SM, Boo HC
    J Food Sci, 2011 Jan-Feb;76(1):C21-30.
    PMID: 21535649 DOI: 10.1111/j.1750-3841.2010.01922.x
    The ability of palm oil (PO) to crystallize as beta prime polymorph has made it an attractive option for the production of margarine fat (MF). Palm stearin (PS) expresses similar crystallization behavior and is considered one of the best substitutes of hydrogenated oils due to its capability to impart the required level of plasticity and body to the finished product. Normally, PS is blended with PO to reduce the melting point at body temperature (37 °C). Lipid phase, formulated by PO and PS in different ratios were subjected to an emulsification process and the following analyses were done: triacylglycerols, solid fat content (SFC), and thermal behavior. In addition, the microstructure properties, including size and number of crystals, were determined for experimental MFs (EMFs) and commercial MFs (CMFs). Results showed that blending and emulsification at PS levels over 40 wt% significantly changed the physicochemical and microstructure properties of EMF as compared to CMF, resulting in a desirable dipalmitoyl-oleoyl-glycerol content of less than 36.1%. SFC at 37 °C, crystal size, crystal number, crystallization, and melting enthalpies (ΔH) were 15%, 5.37 μm, 1425 crystal/μm(2), 17.25 J/g, and 57.69J/g, respectively. All data reported indicate that the formation of granular crystals in MFs was dominated by high-melting triacylglycerol namely dipalmitoyl-oleoyl-glycerol, while the small dose of monoacylglycerol that is used as emulsifier slowed crystallization rate. Practical Application: Most of the past studies were focused on thermal behavior of edible oils and some blends of oils and fats. The crystallization of oils and fats are well documented but there is scarce information concerning some mechanism related to crystallization and emulsification. Therefore, this study will help to gather information on the behavior of emulsifier on crystallization regime; also the dominating TAG responsible for primary granular crystal formations, as well as to determine the best level of stearin to impart the required microstructure properties and body to the finished products.
  12. Kee CH, Ariffin A, Awang K, Noorbatcha I, Takeya K, Morita H, et al.
    Molecules, 2011 Aug 25;16(9):7267-87.
    PMID: 21869754 DOI: 10.3390/molecules16097267
    The n-butyramido, isobutyramido, benzamido, and furancarboxamido functions profoundly modulate the electronics of the stilbene olefinic and NH groups and the corresponding radical cations in ways that influence the efficiency of the cyclization due presumably to conformational and stereoelectronic factors. For example, isobutyramido- stilbene undergoes FeCl(3) promoted cyclization to produce only indoline, while n-butyramidostilbene, under the same conditions, produces both indoline and bisindoline.
  13. Idris A, Abdullah Z, Ariffin A, Fairuz ZA, Ng SW, Tiekink ER
    PMID: 21588631 DOI: 10.1107/S1600536810031260
    The quinoxaline system in the title hydrate, C(15)H(13)N(3)·H(2)O, is roughly planar, the r.m.s. deviation for the 18 non-H atoms being 0.188 Å; this conformation features a short intra-molecular C-H⋯N(pyrazine) inter-action. In the crystal, the amine H atom forms an N-H⋯O hydrogen bond to the water mol-ecule, which in turn forms two O-H⋯N hydrogen bonds to the pyrazine N atoms of different organic mol-ecules. These inter-actions lead to supra-molecular arrays in the bc plane that are two mol-ecules thick; additional π-π inter-actions stabilize the layers [ring centroid-centroid distance = 3.5923 (7) Å]. The layers stack along the a-axis direction via C-H⋯π contacts.
  14. Kee CH, Thomas NF, Ariffin A, Awang K, Ng SW
    PMID: 21582840 DOI: 10.1107/S1600536809021874
    The title mol-ecule, C(22)H(16)N(2)O(4), is a 2,2'-disubstituted biphenyl whose phenyl-ene rings are rotated by 66.5 (1)° so as to avoid repulsion by the substituents. Only one of the two amide -NH- fragments engages in hydrogen bonding, and this inter-acts with the amido -C(=O)- acceptor of an inversion-related mol-ecule to generate a hydrogen-bonded dimer.
  15. Kee CH, Thomas NF, Ariffin A, Awang K, Ng SW
    PMID: 21581068 DOI: 10.1107/S1600536808034569
    In the title mol-ecule, C(25)H(19)NO(2), the furyl ring is twisted by 46.3 (1)° with respect to the phenyl-ene ring bearing the amido group. In the stilbene unit, the two phenyl-ene rings (i.e. the rings connected through the -CH=CH- fragment) are twisted by 59.2 (1)°; in the biphenyl-ene unit, the two benzene rings are twisted by 35.5 (1)°. In the crystal structure, mol-ecules are linked by an N-H⋯O(amido) hydrogen bond into a zigzag chain running along the c axis.
  16. Idris A, Wan Saffiee WA, Abdullah Z, Ariffin A, Ng SW
    PMID: 21581411 DOI: 10.1107/S1600536808038610
    There are two mol-ecules in the asymmetric unit of the title compound, C(14)H(10)ClN(3), with dihedral angles of 5.11 (10) and 13.61 (10)° between the aromatic ring systems. In the crystal structure, mol-ecules are linked by N-H⋯N hydrogen bonds, resulting in chains propagating in [010].
  17. Mansor S, Yehye WA, Ariffin A, Rahman NA, Ng SW
    PMID: 21201758 DOI: 10.1107/S1600536808026056
    Two mol-ecules of the title compound, C(21)H(27)NO(3)S, are disposed about a center of inversion, generating an O-H⋯O hydrogen-bonded dimer.
  18. Mansor S, Yehye WA, Ariffin A, Rahman NA, Ng SW
    PMID: 21201778 DOI: 10.1107/S1600536808026202
    The asymmetric unit of the title compound, C(8)H(20)N(+)·C(21)H(26)NO(3)S(-), contains two indpendent ion pairs which are disposed about a psuedo-inversion center, generating an ammonium-carboxylate N-H⋯O hydrogen-bonded four-component cluster. In the crystal structure, adjacent clusters are linked by hydr-oxy-carboxylate O-H⋯O hydrogen bonds, forming a chain.
  19. Kareem HS, Ariffin A, Nordin N, Heidelberg T, Abdul-Aziz A, Kong KW, et al.
    Eur J Med Chem, 2015 Oct 20;103:497-505.
    PMID: 26402727 DOI: 10.1016/j.ejmech.2015.09.016
    A new series of antioxidants, namely imines bearing the well-known free radical scavenger group 3,4,5-trimethoxybenzyloxy, was designed and synthesized. Theoretical calculations based on density functional theory (DFT) were performed to understand the antioxidant activities. Experimental studies evaluating the antioxidant activities of the compounds using DPPH and FRAP assays verified the predictions obtained by DMOL3 based on DFT.1. The DPPH radical scavenging activities depended on the substitution pattern of the aromatic aldehyde, with both the substitution type and position showing significant effects. Compounds 7b, 7c and 7d, which contain a phenolic hydroxyl group at the para position to the imine as well as, additional electron donating groups at the ortho-position to this hydroxyl group, exhibited IC₅₀ values of 62, 75 and 106 μg/mL, respectively, and potent antioxidant activities against DPPH, which were better than that of the reference compound BHT. With the exception of compounds 7a and 7h with a phenolic hydroxyl group at the ortho position, all of the investigated compounds exhibited ferric reducing activities above 1000 μM. Correlation analysis between the two antioxidant assays revealed moderate positive correlation (r = 0.59), indicating differing antioxidant activities based on the reaction mechanism. Therefore, imines bearing a 3,4,5-trimethoxybenzyloxy group can be proposed as potential antioxidants for tackling oxidative stress.
  20. Yehye WA, Rahman NA, Ariffin A, Abd Hamid SB, Alhadi AA, Kadir FA, et al.
    Eur J Med Chem, 2015 Aug 28;101:295-312.
    PMID: 26150290 DOI: 10.1016/j.ejmech.2015.06.026
    Hindered phenols find a wide variety of applications across many different industry sectors. Butylated hydroxytoluene (BHT) is a most commonly used antioxidant recognized as safe for use in foods containing fats, pharmaceuticals, petroleum products, rubber and oil industries. In the past two decades, there has been growing interest in finding novel antioxidants to meet the requirements of these industries. To accelerate the antioxidant discovery process, researchers have designed and synthesized a series of BHT derivatives targeting to improve its antioxidant properties to be having a wide range of antioxidant activities markedly enhanced radical scavenging ability and other physical properties. Accordingly, some structure-activity relationships and rational design strategies for antioxidants based on BHT structure have been suggested and applied in practice. We have identified 14 very sensitive parameters, which may play a major role on the antioxidant performance of BHT. In this review, we attempt to summarize the current knowledge on this topic, which is of significance in selecting and designing novel antioxidants using a well-known antioxidant BHT as a building-block molecule. Our strategy involved investigation on understanding the chemistry behind the antioxidant activities of BHT, whether through hydrogen or electron transfer mechanism to enable promising anti-oxidant candidates to be synthesized.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links