Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Zhong J, Jermusyk A, Wu L, Hoskins JW, Collins I, Mocci E, et al.
    J Natl Cancer Inst, 2020 Oct 01;112(10):1003-1012.
    PMID: 31917448 DOI: 10.1093/jnci/djz246
    BACKGROUND: Although 20 pancreatic cancer susceptibility loci have been identified through genome-wide association studies in individuals of European ancestry, much of its heritability remains unexplained and the genes responsible largely unknown.

    METHODS: To discover novel pancreatic cancer risk loci and possible causal genes, we performed a pancreatic cancer transcriptome-wide association study in Europeans using three approaches: FUSION, MetaXcan, and Summary-MulTiXcan. We integrated genome-wide association studies summary statistics from 9040 pancreatic cancer cases and 12 496 controls, with gene expression prediction models built using transcriptome data from histologically normal pancreatic tissue samples (NCI Laboratory of Translational Genomics [n = 95] and Genotype-Tissue Expression v7 [n = 174] datasets) and data from 48 different tissues (Genotype-Tissue Expression v7, n = 74-421 samples).

    RESULTS: We identified 25 genes whose genetically predicted expression was statistically significantly associated with pancreatic cancer risk (false discovery rate < .05), including 14 candidate genes at 11 novel loci (1p36.12: CELA3B; 9q31.1: SMC2, SMC2-AS1; 10q23.31: RP11-80H5.9; 12q13.13: SMUG1; 14q32.33: BTBD6; 15q23: HEXA; 15q26.1: RCCD1; 17q12: PNMT, CDK12, PGAP3; 17q22: SUPT4H1; 18q11.22: RP11-888D10.3; and 19p13.11: PGPEP1) and 11 at six known risk loci (5p15.33: TERT, CLPTM1L, ZDHHC11B; 7p14.1: INHBA; 9q34.2: ABO; 13q12.2: PDX1; 13q22.1: KLF5; and 16q23.1: WDR59, CFDP1, BCAR1, TMEM170A). The association for 12 of these genes (CELA3B, SMC2, and PNMT at novel risk loci and TERT, CLPTM1L, INHBA, ABO, PDX1, KLF5, WDR59, CFDP1, and BCAR1 at known loci) remained statistically significant after Bonferroni correction.

    CONCLUSIONS: By integrating gene expression and genotype data, we identified novel pancreatic cancer risk loci and candidate functional genes that warrant further investigation.

  2. Markt SC, Shui IM, Unger RH, Urun Y, Berg CD, Black A, et al.
    Prostate, 2015 Nov;75(15):1677-81.
    PMID: 26268879 DOI: 10.1002/pros.23035
    BACKGROUND: ABO blood group has been associated with risk of cancers of the pancreas, stomach, ovary, kidney, and skin, but has not been evaluated in relation to risk of aggressive prostate cancer.

    METHODS: We used three single nucleotide polymorphisms (SNPs) (rs8176746, rs505922, and rs8176704) to determine ABO genotype in 2,774 aggressive prostate cancer cases and 4,443 controls from the Breast and Prostate Cancer Cohort Consortium (BPC3). Unconditional logistic regression was used to calculate age and study-adjusted odds ratios and 95% confidence intervals for the association between blood type, genotype, and risk of aggressive prostate cancer (Gleason score ≥8 or locally advanced/metastatic disease (stage T3/T4/N1/M1).

    RESULTS: We found no association between ABO blood type and risk of aggressive prostate cancer (Type A: OR = 0.97, 95%CI = 0.87-1.08; Type B: OR = 0.92, 95%CI =n0.77-1.09; Type AB: OR = 1.25, 95%CI = 0.98-1.59, compared to Type O, respectively). Similarly, there was no association between "dose" of A or B alleles and aggressive prostate cancer risk.

    CONCLUSIONS: ABO blood type was not associated with risk of aggressive prostate cancer.

  3. Walsh N, Zhang H, Hyland PL, Yang Q, Mocci E, Zhang M, et al.
    J Natl Cancer Inst, 2019 Jun 01;111(6):557-567.
    PMID: 30541042 DOI: 10.1093/jnci/djy155
    BACKGROUND: Genome-wide association studies (GWAS) identify associations of individual single-nucleotide polymorphisms (SNPs) with cancer risk but usually only explain a fraction of the inherited variability. Pathway analysis of genetic variants is a powerful tool to identify networks of susceptibility genes.

    METHODS: We conducted a large agnostic pathway-based meta-analysis of GWAS data using the summary-based adaptive rank truncated product method to identify gene sets and pathways associated with pancreatic ductal adenocarcinoma (PDAC) in 9040 cases and 12 496 controls. We performed expression quantitative trait loci (eQTL) analysis and functional annotation of the top SNPs in genes contributing to the top associated pathways and gene sets. All statistical tests were two-sided.

    RESULTS: We identified 14 pathways and gene sets associated with PDAC at a false discovery rate of less than 0.05. After Bonferroni correction (P ≤ 1.3 × 10-5), the strongest associations were detected in five pathways and gene sets, including maturity-onset diabetes of the young, regulation of beta-cell development, role of epidermal growth factor (EGF) receptor transactivation by G protein-coupled receptors in cardiac hypertrophy pathways, and the Nikolsky breast cancer chr17q11-q21 amplicon and Pujana ATM Pearson correlation coefficient (PCC) network gene sets. We identified and validated rs876493 and three correlating SNPs (PGAP3) and rs3124737 (CASP7) from the Pujana ATM PCC gene set as eQTLs in two normal derived pancreas tissue datasets.

    CONCLUSION: Our agnostic pathway and gene set analysis integrated with functional annotation and eQTL analysis provides insight into genes and pathways that may be biologically relevant for risk of PDAC, including those not previously identified.

  4. Schumacher FR, Al Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, et al.
    Nat Genet, 2018 07;50(7):928-936.
    PMID: 29892016 DOI: 10.1038/s41588-018-0142-8
    Genome-wide association studies (GWAS) and fine-mapping efforts to date have identified more than 100 prostate cancer (PrCa)-susceptibility loci. We meta-analyzed genotype data from a custom high-density array of 46,939 PrCa cases and 27,910 controls of European ancestry with previously genotyped data of 32,255 PrCa cases and 33,202 controls of European ancestry. Our analysis identified 62 novel loci associated (P C, p.Pro1054Arg) in ATM and rs2066827 (OR = 1.06; P = 2.3 × 10-9; T>G, p.Val109Gly) in CDKN1B. The combination of all loci captured 28.4% of the PrCa familial relative risk, and a polygenic risk score conferred an elevated PrCa risk for men in the ninetieth to ninety-ninth percentiles (relative risk = 2.69; 95% confidence interval (CI): 2.55-2.82) and first percentile (relative risk = 5.71; 95% CI: 5.04-6.48) risk stratum compared with the population average. These findings improve risk prediction, enhance fine-mapping, and provide insight into the underlying biology of PrCa1.
  5. Michailidou K, Lindström S, Dennis J, Beesley J, Hui S, Kar S, et al.
    Nature, 2017 Nov 02;551(7678):92-94.
    PMID: 29059683 DOI: 10.1038/nature24284
    Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer risk at P 
  6. Schumacher FR, Olama AAA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, et al.
    Nat Genet, 2019 02;51(2):363.
    PMID: 30622367 DOI: 10.1038/s41588-018-0330-6
    In the version of this article initially published, the name of author Manuela Gago-Dominguez was misspelled as Manuela Gago Dominguez. The error has been corrected in the HTML and PDF version of the article.
  7. Morra A, Jung AY, Behrens S, Keeman R, Ahearn TU, Anton-Culver H, et al.
    Cancer Epidemiol Biomarkers Prev, 2021 Apr;30(4):623-642.
    PMID: 33500318 DOI: 10.1158/1055-9965.EPI-20-0924
    BACKGROUND: It is not known whether modifiable lifestyle factors that predict survival after invasive breast cancer differ by subtype.

    METHODS: We analyzed data for 121,435 women diagnosed with breast cancer from 67 studies in the Breast Cancer Association Consortium with 16,890 deaths (8,554 breast cancer specific) over 10 years. Cox regression was used to estimate associations between risk factors and 10-year all-cause mortality and breast cancer-specific mortality overall, by estrogen receptor (ER) status, and by intrinsic-like subtype.

    RESULTS: There was no evidence of heterogeneous associations between risk factors and mortality by subtype (P adj > 0.30). The strongest associations were between all-cause mortality and BMI ≥30 versus 18.5-25 kg/m2 [HR (95% confidence interval (CI), 1.19 (1.06-1.34)]; current versus never smoking [1.37 (1.27-1.47)], high versus low physical activity [0.43 (0.21-0.86)], age ≥30 years versus <20 years at first pregnancy [0.79 (0.72-0.86)]; >0-<5 years versus ≥10 years since last full-term birth [1.31 (1.11-1.55)]; ever versus never use of oral contraceptives [0.91 (0.87-0.96)]; ever versus never use of menopausal hormone therapy, including current estrogen-progestin therapy [0.61 (0.54-0.69)]. Similar associations with breast cancer mortality were weaker; for example, 1.11 (1.02-1.21) for current versus never smoking.

    CONCLUSIONS: We confirm associations between modifiable lifestyle factors and 10-year all-cause mortality. There was no strong evidence that associations differed by ER status or intrinsic-like subtype.

    IMPACT: Given the large dataset and lack of evidence that associations between modifiable risk factors and 10-year mortality differed by subtype, these associations could be cautiously used in prognostication models to inform patient-centered care.

  8. Honda K, Katzke VA, Hüsing A, Okaya S, Shoji H, Onidani K, et al.
    Int J Cancer, 2019 Apr 15;144(8):1877-1887.
    PMID: 30259989 DOI: 10.1002/ijc.31900
    Recently, we identified unique processing patterns of apolipoprotein A2 (ApoA2) in patients with pancreatic cancer. Our study provides a first prospective evaluation of an ApoA2 isoform ("ApoA2-ATQ/AT"), alone and in combination with carbohydrate antigen 19-9 (CA19-9), as an early detection biomarker for pancreatic cancer. We performed ELISA measurements of CA19-9 and ApoA2-ATQ/AT in 156 patients with pancreatic cancer and 217 matched controls within the European EPIC cohort, using plasma samples collected up to 60 months prior to diagnosis. The detection discrimination statistics were calculated for risk scores by strata of lag-time. For CA19-9, in univariate marker analyses, C-statistics to distinguish future pancreatic cancer patients from cancer-free individuals were 0.80 for plasma taken ≤6 months before diagnosis, and 0.71 for >6-18 months; for ApoA2-ATQ/AT, C-statistics were 0.62, and 0.65, respectively. Joint models based on ApoA2-ATQ/AT plus CA19-9 significantly improved discrimination within >6-18 months (C = 0.74 vs. 0.71 for CA19-9 alone, p = 0.022) and ≤ 18 months (C = 0.75 vs. 0.74, p = 0.022). At 98% specificity, and for lag times of ≤6, >6-18 or ≤ 18 months, sensitivities were 57%, 36% and 43% for CA19-9 combined with ApoA2-ATQ/AT, respectively, vs. 50%, 29% and 36% for CA19-9 alone. Compared to CA19-9 alone, the combination of CA19-9 and ApoA2-ATQ/AT may improve detection of pancreatic cancer up to 18 months prior to diagnosis under usual care, and may provide a useful first measure for pancreatic cancer detection prior to imaging.
  9. Childs EJ, Mocci E, Campa D, Bracci PM, Gallinger S, Goggins M, et al.
    Nat Genet, 2015 Aug;47(8):911-6.
    PMID: 26098869 DOI: 10.1038/ng.3341
    Pancreatic cancer is the fourth leading cause of cancer death in the developed world. Both inherited high-penetrance mutations in BRCA2 (ref. 2), ATM, PALB2 (ref. 4), BRCA1 (ref. 5), STK11 (ref. 6), CDKN2A and mismatch-repair genes and low-penetrance loci are associated with increased risk. To identify new risk loci, we performed a genome-wide association study on 9,925 pancreatic cancer cases and 11,569 controls, including 4,164 newly genotyped cases and 3,792 controls in 9 studies from North America, Central Europe and Australia. We identified three newly associated regions: 17q25.1 (LINC00673, rs11655237, odds ratio (OR) = 1.26, 95% confidence interval (CI) = 1.19-1.34, P = 1.42 × 10(-14)), 7p13 (SUGCT, rs17688601, OR = 0.88, 95% CI = 0.84-0.92, P = 1.41 × 10(-8)) and 3q29 (TP63, rs9854771, OR = 0.89, 95% CI = 0.85-0.93, P = 2.35 × 10(-8)). We detected significant association at 2p13.3 (ETAA1, rs1486134, OR = 1.14, 95% CI = 1.09-1.19, P = 3.36 × 10(-9)), a region with previous suggestive evidence in Han Chinese. We replicated previously reported associations at 9q34.2 (ABO), 13q22.1 (KLF5), 5p15.33 (TERT and CLPTM1), 13q12.2 (PDX1), 1q32.1 (NR5A2), 7q32.3 (LINC-PINT), 16q23.1 (BCAR1) and 22q12.1 (ZNRF3). Our study identifies new loci associated with pancreatic cancer risk.
  10. Campa D, Pastore M, Capurso G, Hackert T, Di Leo M, Izbicki JR, et al.
    Int J Cancer, 2018 01 15;142(2):290-296.
    PMID: 28913878 DOI: 10.1002/ijc.31047
    Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive tumor with a five-year survival of less than 6%. Chronic pancreatitis (CP), an inflammatory process in of the pancreas, is a strong risk factor for PDAC. Several genetic polymorphisms have been discovered as susceptibility loci for both CP and PDAC. Since CP and PDAC share a consistent number of epidemiologic risk factors, the aim of this study was to investigate whether specific CP risk loci also contribute to PDAC susceptibility. We selected five common SNPs (rs11988997, rs379742, rs10273639, rs2995271 and rs12688220) that were identified as susceptibility markers for CP and analyzed them in 2,914 PDAC cases, 356 CP cases and 5,596 controls retrospectively collected in the context of the international PANDoRA consortium. We found a weak association between the minor allele of the PRSS1-PRSS2-rs10273639 and an increased risk of developing PDAC (ORhomozygous  = 1.19, 95% CI 1.02-1.38, p = 0.023). Additionally all the SNPs confirmed statistically significant associations with risk of developing CP, the strongest being PRSS1-PRSS2-rs10273639 (ORheterozygous  = 0.51, 95% CI 0.39-0.67, p = 1.10 × 10-6 ) and MORC4-rs 12837024 (ORhomozygous  = 2.07 (1.55-2.77, ptrend  = 0.7 × 10-11 ). Taken together, the results from our study do not support variants rs11988997, rs379742, rs10273639, rs2995271 and rs12688220 as strong predictors of PDAC risk, but further support the role of these SNPs in CP susceptibility. Our study suggests that CP and PDAC probably do not share genetic susceptibility, at least in terms of high frequency variants.
  11. Machiela MJ, Zhou W, Karlins E, Sampson JN, Freedman ND, Yang Q, et al.
    Nat Commun, 2016 06 13;7:11843.
    PMID: 27291797 DOI: 10.1038/ncomms11843
    To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases.
  12. Fachal L, Aschard H, Beesley J, Barnes DR, Allen J, Kar S, et al.
    Nat Genet, 2020 01;52(1):56-73.
    PMID: 31911677 DOI: 10.1038/s41588-019-0537-1
    Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes.
  13. Dadaev T, Saunders EJ, Newcombe PJ, Anokian E, Leongamornlert DA, Brook MN, et al.
    Nat Commun, 2018 06 11;9(1):2256.
    PMID: 29892050 DOI: 10.1038/s41467-018-04109-8
    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling.
  14. Baxter JS, Johnson N, Tomczyk K, Gillespie A, Maguire S, Brough R, et al.
    Am J Hum Genet, 2021 Jul 01;108(7):1190-1203.
    PMID: 34146516 DOI: 10.1016/j.ajhg.2021.05.013
    A combination of genetic and functional approaches has identified three independent breast cancer risk loci at 2q35. A recent fine-scale mapping analysis to refine these associations resulted in 1 (signal 1), 5 (signal 2), and 42 (signal 3) credible causal variants at these loci. We used publicly available in silico DNase I and ChIP-seq data with in vitro reporter gene and CRISPR assays to annotate signals 2 and 3. We identified putative regulatory elements that enhanced cell-type-specific transcription from the IGFBP5 promoter at both signals (30- to 40-fold increased expression by the putative regulatory element at signal 2, 2- to 3-fold by the putative regulatory element at signal 3). We further identified one of the five credible causal variants at signal 2, a 1.4 kb deletion (esv3594306), as the likely causal variant; the deletion allele of this variant was associated with an average additional increase in IGFBP5 expression of 1.3-fold (MCF-7) and 2.2-fold (T-47D). We propose a model in which the deletion allele of esv3594306 juxtaposes two transcription factor binding regions (annotated by estrogen receptor alpha ChIP-seq peaks) to generate a single extended regulatory element. This regulatory element increases cell-type-specific expression of the tumor suppressor gene IGFBP5 and, thereby, reduces risk of estrogen receptor-positive breast cancer (odds ratio = 0.77, 95% CI 0.74-0.81, p = 3.1 × 10-31).
  15. Campa D, Pastore M, Gentiluomo M, Talar-Wojnarowska R, Kupcinskas J, Malecka-Panas E, et al.
    Oncotarget, 2016 08 30;7(35):57011-57020.
    PMID: 27486979 DOI: 10.18632/oncotarget.10935
    The CDKN2A (p16) gene plays a key role in pancreatic cancer etiology. It is one of the most commonly somatically mutated genes in pancreatic cancer, rare germline mutations have been found to be associated with increased risk of developing familiar pancreatic cancer and CDKN2A promoter hyper-methylation has been suggested to play a critical role both in pancreatic cancer onset and prognosis. In addition several unrelated SNPs in the 9p21.3 region, that includes the CDNK2A, CDNK2B and the CDNK2B-AS1 genes, are associated with the development of cancer in various organs. However, association between the common genetic variability in this region and pancreatic cancer risk is not clearly understood. We sought to fill this gap in a case-control study genotyping 13 single nucleotide polymorphisms (SNPs) in 2,857 pancreatic ductal adenocarcinoma (PDAC) patients and 6,111 controls in the context of the Pancreatic Disease Research (PANDoRA) consortium. We found that the A allele of the rs3217992 SNP was associated with an increased pancreatic cancer risk (ORhet=1.14, 95% CI 1.01-1.27, p=0.026, ORhom=1.30, 95% CI 1.12-1.51, p=0.00049). This pleiotropic variant is reported to be a mir-SNP that, by changing the binding site of one or more miRNAs, could influence the normal cell cycle progression and in turn increase PDAC risk. In conclusion, we observed a novel association in a pleiotropic region that has been found to be of key relevance in the susceptibility to various types of cancer and diabetes suggesting that the CDKN2A/B locus could represent a genetic link between diabetes and pancreatic cancer risk.
  16. Machiela MJ, Hofmann JN, Carreras-Torres R, Brown KM, Johansson M, Wang Z, et al.
    Eur Urol, 2017 Nov;72(5):747-754.
    PMID: 28797570 DOI: 10.1016/j.eururo.2017.07.015
    BACKGROUND: Relative telomere length in peripheral blood leukocytes has been evaluated as a potential biomarker for renal cell carcinoma (RCC) risk in several studies, with conflicting findings.

    OBJECTIVE: We performed an analysis of genetic variants associated with leukocyte telomere length to assess the relationship between telomere length and RCC risk using Mendelian randomization, an approach unaffected by biases from temporal variability and reverse causation that might have affected earlier investigations.

    DESIGN, SETTING, AND PARTICIPANTS: Genotypes from nine telomere length-associated variants for 10 784 cases and 20 406 cancer-free controls from six genome-wide association studies (GWAS) of RCC were aggregated into a weighted genetic risk score (GRS) predictive of leukocyte telomere length.

    OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Odds ratios (ORs) relating the GRS and RCC risk were computed in individual GWAS datasets and combined by meta-analysis.

    RESULTS AND LIMITATIONS: Longer genetically inferred telomere length was associated with an increased risk of RCC (OR=2.07 per predicted kilobase increase, 95% confidence interval [CI]:=1.70-2.53, p<0.0001). As a sensitivity analysis, we excluded two telomere length variants in linkage disequilibrium (R2>0.5) with GWAS-identified RCC risk variants (rs10936599 and rs9420907) from the telomere length GRS; despite this exclusion, a statistically significant association between the GRS and RCC risk persisted (OR=1.73, 95% CI=1.36-2.21, p<0.0001). Exploratory analyses for individual histologic subtypes suggested comparable associations with the telomere length GRS for clear cell (N=5573, OR=1.93, 95% CI=1.50-2.49, p<0.0001), papillary (N=573, OR=1.96, 95% CI=1.01-3.81, p=0.046), and chromophobe RCC (N=203, OR=2.37, 95% CI=0.78-7.17, p=0.13).

    CONCLUSIONS: Our investigation adds to the growing body of evidence indicating some aspect of longer telomere length is important for RCC risk.

    PATIENT SUMMARY: Telomeres are segments of DNA at chromosome ends that maintain chromosomal stability. Our study investigated the relationship between genetic variants associated with telomere length and renal cell carcinoma risk. We found evidence suggesting individuals with inherited predisposition to longer telomere length are at increased risk of developing renal cell carcinoma.

  17. Campa D, Matarazzi M, Greenhalf W, Bijlsma M, Saum KU, Pasquali C, et al.
    Int J Cancer, 2019 03 15;144(6):1275-1283.
    PMID: 30325019 DOI: 10.1002/ijc.31928
    Telomere deregulation is a hallmark of cancer. Telomere length measured in lymphocytes (LTL) has been shown to be a risk marker for several cancers. For pancreatic ductal adenocarcinoma (PDAC) consensus is lacking whether risk is associated with long or short telomeres. Mendelian randomization approaches have shown that a score built from SNPs associated with LTL could be used as a robust risk marker. We explored this approach in a large scale study within the PANcreatic Disease ReseArch (PANDoRA) consortium. We analyzed 10 SNPs (ZNF676-rs409627, TERT-rs2736100, CTC1-rs3027234, DHX35-rs6028466, PXK-rs6772228, NAF1-rs7675998, ZNF208-rs8105767, OBFC1-rs9420907, ACYP2-rs11125529 and TERC-rs10936599) alone and combined in a LTL genetic score ("teloscore", which explains 2.2% of the telomere variability) in relation to PDAC risk in 2,374 cases and 4,326 controls. We identified several associations with PDAC risk, among which the strongest were with the TERT-rs2736100 SNP (OR = 1.54; 95%CI 1.35-1.76; p = 1.54 × 10-10 ) and a novel one with the NAF1-rs7675998 SNP (OR = 0.80; 95%CI 0.73-0.88; p = 1.87 × 10-6 , ptrend = 3.27 × 10-7 ). The association of short LTL, measured by the teloscore, with PDAC risk reached genome-wide significance (p = 2.98 × 10-9 for highest vs. lowest quintile; p = 1.82 × 10-10 as a continuous variable). In conclusion, we present a novel genome-wide candidate SNP for PDAC risk (TERT-rs2736100), a completely new signal (NAF1-rs7675998) approaching genome-wide significance and we report a strong association between the teloscore and risk of pancreatic cancer, suggesting that telomeres are a potential risk factor for pancreatic cancer.
  18. Yuan F, Hung RJ, Walsh N, Zhang H, Platz EA, Wheeler W, et al.
    Cancer Res, 2020 Sep 15;80(18):4004-4013.
    PMID: 32641412 DOI: 10.1158/0008-5472.CAN-20-0447
    Registry-based epidemiologic studies suggest associations between chronic inflammatory intestinal diseases and pancreatic ductal adenocarcinoma (PDAC). As genetic susceptibility contributes to a large proportion of chronic inflammatory intestinal diseases, we hypothesize that the genomic regions surrounding established genome-wide associated variants for these chronic inflammatory diseases are associated with PDAC. We examined the association between PDAC and genomic regions (±500 kb) surrounding established common susceptibility variants for ulcerative colitis, Crohn's disease, inflammatory bowel disease, celiac disease, chronic pancreatitis, and primary sclerosing cholangitis. We analyzed summary statistics from genome-wide association studies data for 8,384 cases and 11,955 controls of European descent from two large consortium studies using the summary data-based adaptive rank truncated product method to examine the overall association of combined genomic regions for each inflammatory disease group. Combined genomic susceptibility regions for ulcerative colitis, Crohn disease, inflammatory bowel disease, and chronic pancreatitis were associated with PDAC at P values < 0.05 (0.0040, 0.0057, 0.011, and 3.4 × 10-6, respectively). After excluding the 20 PDAC susceptibility regions (±500 kb) previously identified by GWAS, the genomic regions for ulcerative colitis, Crohn disease, and inflammatory bowel disease remained associated with PDAC (P = 0.0029, 0.0057, and 0.0098, respectively). Genomic regions for celiac disease (P = 0.22) and primary sclerosing cholangitis (P = 0.078) were not associated with PDAC. Our results support the hypothesis that genomic regions surrounding variants associated with inflammatory intestinal diseases, particularly, ulcerative colitis, Crohn disease, inflammatory bowel disease, and chronic pancreatitis are associated with PDAC. SIGNIFICANCE: The joint effects of common variants in genomic regions containing susceptibility loci for inflammatory bowel disease and chronic pancreatitis are associated with PDAC and may provide insights to understanding pancreatic cancer etiology.
  19. Tang H, Jiang L, Stolzenberg-Solomon RZ, Arslan AA, Beane Freeman LE, Bracci PM, et al.
    Cancer Epidemiol Biomarkers Prev, 2020 Sep;29(9):1784-1791.
    PMID: 32546605 DOI: 10.1158/1055-9965.EPI-20-0275
    BACKGROUND: Obesity and diabetes are major modifiable risk factors for pancreatic cancer. Interactions between genetic variants and diabetes/obesity have not previously been comprehensively investigated in pancreatic cancer at the genome-wide level.

    METHODS: We conducted a gene-environment interaction (GxE) analysis including 8,255 cases and 11,900 controls from four pancreatic cancer genome-wide association study (GWAS) datasets (Pancreatic Cancer Cohort Consortium I-III and Pancreatic Cancer Case Control Consortium). Obesity (body mass index ≥30 kg/m2) and diabetes (duration ≥3 years) were the environmental variables of interest. Approximately 870,000 SNPs (minor allele frequency ≥0.005, genotyped in at least one dataset) were analyzed. Case-control (CC), case-only (CO), and joint-effect test methods were used for SNP-level GxE analysis. As a complementary approach, gene-based GxE analysis was also performed. Age, sex, study site, and principal components accounting for population substructure were included as covariates. Meta-analysis was applied to combine individual GWAS summary statistics.

    RESULTS: No genome-wide significant interactions (departures from a log-additive odds model) with diabetes or obesity were detected at the SNP level by the CC or CO approaches. The joint-effect test detected numerous genome-wide significant GxE signals in the GWAS main effects top hit regions, but the significance diminished after adjusting for the GWAS top hits. In the gene-based analysis, a significant interaction of diabetes with variants in the FAM63A (family with sequence similarity 63 member A) gene (significance threshold P < 1.25 × 10-6) was observed in the meta-analysis (P GxE = 1.2 ×10-6, P Joint = 4.2 ×10-7).

    CONCLUSIONS: This analysis did not find significant GxE interactions at the SNP level but found one significant interaction with diabetes at the gene level. A larger sample size might unveil additional genetic factors via GxE scans.

    IMPACT: This study may contribute to discovering the mechanism of diabetes-associated pancreatic cancer.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links