Displaying publications 1 - 20 of 47 in total

Abstract:
Sort:
  1. Abdullah ZL, Chee HY, Yusof R, Mohd Fauzi F
    ACS Omega, 2023 Sep 12;8(36):32483-32497.
    PMID: 37720780 DOI: 10.1021/acsomega.3c02607
    Dengue virus (DENV) infection is one of the most widely spread flavivirus infections. Despite the fatality it could cause, no antiviral treatment is currently available to treat the disease. Hence, this study aimed to repurpose old drugs as novel DENV NS3 inhibitors. Ligand-based (L-B) and proteochemometric (PCM) prediction models were built using 62,354 bioactivity data to screen for potential NS3 inhibitors. Selected drugs were then subjected to the foci forming unit reduction assay (FFURA) and protease inhibition assay. Finally, molecular docking was performed to validate these results. The in silico studies revealed that both models performed well in the internal and external validations. However, the L-B model showed better accuracy in the external validation in terms of its sensitivity (0.671). In the in vitro validation, all drugs (zileuton, trimethadione, and linalool) were able to moderately inhibit the viral activities at the highest concentration tested. Zileuton showed comparable results with linalool when tested at 2 mM against the DENV NS3 protease, with a reduction of protease activity at 17.89 and 18.42%, respectively. Two new compounds were also proposed through the combination of the selected drugs, which are ziltri (zilueton + trimethadione) and zilool (zileuton + linalool). The molecular docking study confirms the in vitro observations where all drugs and proposed compounds were able to achieve binding affinity ≥ -4.1 kcal/mol, with ziltri showing the highest affinity at -7.7 kcal/mol, surpassing the control, panduratin A. The occupation of both S1 and S2 subpockets of NS2B-NS3 may be essential and a reason for the lower binding energy shown by the proposed compounds compared to the screened drugs. Based on the results, this study provided five potential new lead compounds (ziltri, zilool, zileuton, linalool, and trimethadione) for DENV that could be modified further.
  2. Rosli MZ, Mohd-Taib FS, Khoo JJ, Chee HY, Wong YP, Shafie NJ, et al.
    Ecohealth, 2023 Jun;20(2):208-224.
    PMID: 37103759 DOI: 10.1007/s10393-023-01637-8
    Leptospirosis is a major zoonotic disease, especially in the tropics, and rodents were known to be carriers of this bacterium. There was established information on Leptospira prevalence among animal reservoirs in human-dominated landscapes from previous literature. However, there was very little focus given comparing the prevalence of Leptospira in a wide range of habitats. An extensive sampling of small mammals from various landscapes was carried out, covering oil palm plantations, paddy fields, recreational forests, semi-urbans, and wet markets in Peninsular Malaysia. This study aims to determine the prevalence of pathogenic Leptospira in a diversity of small mammals across different landscapes. Cage-trapping was deployed for small mammals' trappings, and the kidneys of captured individuals were extracted, for screening of pathogenic Leptospira by polymerase chain reaction (PCR) using LipL32 primer. Eight microhabitat parameters were measured at each study site. Out of 357 individuals captured, 21 (5.9%) were positive for pathogenic Leptospira of which recreational forest had the highest prevalence (8.8%) for landscape types, whereas Sundamys muelleri shows the highest prevalence (50%) among small mammals' species. Microhabitat analysis reveals that rubbish quantity (p 
  3. Othman S, Lee PY, Lam JY, Philip N, Azhari NN, Affendy NB, et al.
    PeerJ, 2022;10:e12850.
    PMID: 35291487 DOI: 10.7717/peerj.12850
    BACKGROUND: Leptospirosis is a zoonotic disease caused by bacteria of the genus Leptospira that affects both humans and animals worldwide. Early detection of the pathogen in humans is crucial for early intervention and control of the progression of the disease to a severe state. It is also vitally important to be able to detect the presence of the pathogen in carrier animals to control the spread of the disease from the environment. Here we developed a simple and rapid loop-mediated isothermal amplification (LAMP) assay targeting the leptospiral secY gene.

    RESULTS: Several reaction conditions of the LAMP reaction were optimized to ensure efficient amplification of the target DNA. The sensitivity of the developed LAMP assay obtained using a pure Leptospira culture was 2 × 104 copies of genomic DNA per reaction (equivalent to 0.1 ng) for a 40-minute reaction time. No cross-reactions were observed in the LAMP reaction against a series of non-leptospiral bacteria, indicating a specific reaction. The applicability of the LAMP assay was demonstrated on human blood and urine specimens collected from suspected leptospirosis patients and rat kidney specimens collected from suspected leptospirosis outbreak areas and high-risk areas. The developed LAMP assay demonstrated a higher detection rate for leptospiral DNA compared with the polymerase chain reaction (PCR) assay, possibly due to the presence of inhibitory substances, especially in rat kidney specimens, to which the PCR method is more susceptible. The present findings also highlight the importance of urine sample collection from patients for routine monitoring of the disease.

    CONCLUSIONS: In short, the developed LAMP assay can serve as a feasible alternative tool for the diagnosis of leptospirosis and be used for epidemiological and environmental surveillance of the disease, considering its robustness, rapidity, sensitivity, and specificity, as demonstrated in this study.

  4. Aliyu B, Raji YE, Chee HY, Wong MY, Sekawi ZB
    PLoS One, 2022;17(12):e0277206.
    PMID: 36454880 DOI: 10.1371/journal.pone.0277206
    Efforts are ongoing by researchers globally to develop new drugs or repurpose existing ones for treating COVID-19. Thus, this led to the use of oseltamivir, an antiviral drug used for treating influenza A and B viruses, as a trial drug for COVID-19. However, available evidence from clinical studies has shown conflicting results on the effectiveness of oseltamivir in COVID-19 treatment. Therefore, this systematic review and meta-analysis was performed to assess the clinical safety and efficacy of oseltamivir for treating COVID-19. The study was conducted according to the PRISMA guidelines, and the priori protocol was registered in PROSPERO (CRD42021270821). Five databases were searched, the identified records were screened, and followed by the extraction of relevant data. Eight observational studies from four Asian countries were included. A random-effects model was used to pool odds ratios (ORs), mean differences (MD), and their 95% confidence intervals (CI) for the study analysis. Survival was not significantly different between all categories of oseltamivir and the comparison groups analysed. The duration of hospitalisation was significantly shorter in the oseltamivir group following sensitivity analysis (MD -5.95, 95% CI -9.91--1.99 p = 0.003, heterogeneity I2 0%, p = 0.37). The virological, laboratory and radiological response rates were all not in favour of oseltamivir. However, the electrocardiographic safety parameters were found to be better in the oseltamivir group. However, more studies are needed to establish robust evidence on the effectiveness or otherwise of oseltamivir usage for treating COVID-19.
  5. Zaujan NAM, Ali A, Osman M, Chee HY, Ithnin NR, Misni N, et al.
    PMID: 34639593 DOI: 10.3390/ijerph181910294
    (1) Background: Lack of food safety awareness and preventive behaviour when dining out increases the risk of food poisoning. Furthermore, food poisoning cases among rural communities have been rising in recent years. However, the health-related mobile application is a promising tool in improving food poisoning prevention knowledge, attitude, practice, and perception (KAP2) among consumers. Therefore, the current study developed a novel smartphone app, MyWarung©, and determined its efficacy in increasing awareness, attitude, practice, and perception of food poisoning and its prevention when dining out, especially among rural consumers. (2) Methods: A quasi-experimental pre-and post-intervention study with a control and intervention group were performed on 100 consumers in Terengganu. (3) Results: The intervention's inter-group outcomes were analysed using the Mann-Whitney test, while the within-group effects were ascertained using the Wilcoxon sign rank test via the SPSS software. It was found that the control group had higher median scores in knowledge (30.0, IQR 7.0), attitude (46.0, IQR 5.0), and practice (34.0, IQR 3.0) than the intervention group before intervention. After the intervention programme, the intervention group showed significant improvement in food poisoning knowledge (p = 0.000), attitude (p = 0.001), and practice (p = 0.000). However, the intervention group's perceived barriers (p = 0.129) and susceptibility (p = 0.069) and the control group's perceived barriers (p = 0.422) did not show any significant improvement. (4) Conclusion: The findings indicated that the MyWarung© mobile app usage enhanced the food poisoning knowledge, preventive attitude, and practice among consumers when dining out.
  6. Lee PY, Wong YP, Othman S, Chee HY
    Asian Biomed (Res Rev News), 2021 Aug;15(4):183-189.
    PMID: 37551329 DOI: 10.2478/abm-2021-0023
    BACKGROUND: Loop-mediated isothermal amplification (LAMP) is one of the most promising tools for rapidly detecting Leptospira spp. However, LAMP is hampered by cold storage to maintain the enzymatic activity of Bst DNA polymerase.

    OBJECTIVE: To overcome the drawback of cold storage requirement for LAMP reagents we modified the reagents by adding sucrose as stabilizer. We then sought to determine the stability at room temperature of the premixed LAMP reagents containing sucrose.

    METHOD: Premixed LAMP reagents with sucrose and without sucrose were prepared. The prepared mixtures were stored at room temperature for up to 60 days, and were subjected to LAMP reactions at various intervals using rat kidney samples to detect leptospiral DNA.

    RESULTS: The premixed LAMP reagents with sucrose remained stable for 45 days while sucrose-free premixed LAMP reagents showed no amplification from day 1 of storage at room temperature up to day 14.

    CONCLUSION: The LAMP reagent system can be refined by using sucrose as stabilizer, thus allowing their storage at room temperature without the need for cold storage. The modified method enables greater feasibility of LAMP for field surveillance and epidemiology in resource-limited settings.

  7. Yap ML, Chew LJ, Pritpal Singh SS, Sekawi Z, Chee HY, Ong HKO, et al.
    Trop Biomed, 2021 Jun 01;38(2):122-128.
    PMID: 34172700 DOI: 10.47665/tb.38.2.047
    Leptospirosis is an emerging zoonotic disease endemic in tropical regions. Aiming at assessing the potential infection risks via recreational exposure, the molecular prevalence of pathogenic Leptospira in 14 amenity forests in five selected districts of the state of Perak was determined. Water and soil samples along streams and waterfalls were subjected to culture of leptospires and the pathogenic Leptospira spp. was detected by lipL32-based polymerase chain reaction (PCR). Twenty out of 154 samples (13%) that tested positive for leptospires were mostly soils and still water recorded with tolerable temperatures (22.2- 26.5°C) and pHs (5.73-6.70). The localised prevalence was highly varied among eight positive forests (6.7-41.7%), particularly higher in Kampar and Kinta districts which are the more populated urban areas. The importance of public health surveillance should not be underrated given the high prevalence of Leptospira spp. in forests in close proximity to indigenous settlements, even where the places are clean. Overall, this study discovered a wide distribution of pathogenic Leptospira spp. in recreational areas.
  8. Ninyio NN, Ho KL, Yong CY, Chee HY, Hamid M, Ong HK, et al.
    Int J Mol Sci, 2021 Feb 15;22(4).
    PMID: 33672018 DOI: 10.3390/ijms22041922
    Hepatitis B is a major global health challenge. In the absence of an effective treatment for the disease, hepatitis B vaccines provide protection against the viral infection. However, some individuals do not have positive immune responses after being vaccinated with the hepatitis B vaccines available in the market. Thus, it is important to develop a more protective vaccine. Previously, we showed that hepatitis B virus (HBV) 'a' determinant (aD) displayed on the prawn nodavirus capsid (Nc) and expressed in Spodoptera frugiperda (Sf9) cells (namely, Nc-aD-Sf9) self-assembled into virus-like particles (VLPs). Immunisation of BALB/c mice with the Nc-aD-Sf9 VLPs showed significant induction of humoral, cellular and memory B-cell immunity. In the present study, the biophysical properties of the Nc-aD-Sf9 VLPs were studied using dynamic light scattering (DLS) and circular dichroism (CD) spectroscopy. Enzyme-linked immunosorbent assay (ELISA) was used to determine the antigenicity of the Nc-aD-Sf9 VLPs, and multiplex ELISA was employed to quantify the cytokine response induced by the VLPs administered intramuscularly into BALB/c mice (n = 8). CD spectroscopy of Nc-aD-Sf9 VLPs showed that the secondary structure of the VLPs predominantly consisted of beta (β)-sheets (44.8%), and they were thermally stable up to ~52 °C. ELISA revealed that the aD epitope of the VLPs was significantly antigenic to anti-HBV surface antigen (HBsAg) antibodies. In addition, multiplex ELISA of serum samples from the vaccinated mice showed a significant induction (p < 0.001) of IFN-γ, IL-4, IL-5, IL-6, IL-10, and IL-12p70. This cytokine profile is indicative of natural killer cell, macrophage, dendritic cell and cytotoxic T-lymphocyte activities, which suggests a prophylactic innate and adaptive cellular immune response mediated by Nc-aD-Sf9 VLPs. Interestingly, Nc-aD-Sf9 induced a more robust release of the aforementioned cytokines than that of Nc-aD VLPs produced in Escherichia coli and a commercially used hepatitis B vaccine. Overall, Nc-aD-Sf9 VLPs are thermally stable and significantly antigenic, demonstrating their potential as an HBV vaccine candidate.
  9. Sakinah S, Priya SP, Mok PL, Munisvaradass R, Teh SW, Sun Z, et al.
    Front Cell Dev Biol, 2021;9:637270.
    PMID: 34291043 DOI: 10.3389/fcell.2021.637270
    Extensive clinical efforts have been made to control the severity of dengue diseases; however, the dengue morbidity and mortality have not declined. Dengue virus (DENV) can infect and cause systemic damage in many organs, resulting in organ failure. Here, we present a novel report showing a tailored stem-cell-based therapy that can aid in viral clearance and rescue liver cells from further damage during dengue infection. We administered a combination of hematopoietic stem cells and endothelial progenitor cells in a DENV-infected BALB/c mouse model and found that delivery of this cell cocktail had improved their liver functions, confirmed by hematology, histopathology, and next-generation sequencing. These stem and progenitor cells can differentiate into target cells and repair the damaged tissues. In addition, the regime can regulate endothelial proliferation and permeability, modulate inflammatory reactions, enhance extracellular matrix production and angiogenesis, and secrete an array of growth factors to create an enhanced milieu for cell reparation. No previous study has been published on the treatment of dengue infection using stem cells combination. In conclusion, dengue-induced liver damage was rescued by administration of stem cell therapy, with less apoptosis and improved repair and regeneration in the dengue mouse model.
  10. Sakinah S, Priya SP, Mok PL, Munisvaradass R, Teh SW, Sun Z, et al.
    Front Cell Dev Biol, 2021;9:800659.
    PMID: 35178398 DOI: 10.3389/fcell.2021.800659
    [This corrects the article DOI: 10.3389/fcell.2021.637270.].
  11. Ninyio NN, Ho KL, Ong HK, Yong CY, Chee HY, Hamid M, et al.
    Vaccines (Basel), 2020 Jun 04;8(2).
    PMID: 32512923 DOI: 10.3390/vaccines8020275
    Chimeric virus-like particles (VLPs) have been widely exploited for various purposes including their use as vaccine candidates, particularly due to their ability to induce stronger immune responses than VLPs consisting of single viral proteins. In the present study, VLPs of the Macrobrachium rosenbergii nodavirus (MrNV) capsid protein (Nc) displaying the hepatitis B virus "a" determinant (aD) were produced in Spodoptera frugiperda (Sf9) insect cells. BALB/c mice immunised with the purified chimeric Nc-aD VLPs elicited a sustained titre of anti-aD antibody, which was significantly higher than that elicited by a commercially available hepatitis B vaccine and Escherichia coli-produced Nc-aD VLPs. Immunophenotyping showed that the Sf9-produced Nc-aD VLPs induced proliferation of cytotoxic T-lymphocytes and NK1.1 natural killer cells. Furthermore, enzyme-linked immunospot (ELISPOT)analysis showed the presence of antibody-secreting memory B cells in the mice splenocytes stimulated with the synthetic aD peptide. The significant humoral, natural killer cell and memory B cell immune responses induced by the Sf9-produced Nc-aD VLPs suggest that they present good prospects for use as a hepatitis B vaccine candidate.
  12. Suppiah J, Nadaraju S, Hamzah S, Chee HY
    Trop Biomed, 2020 Jun 01;37(2):282-287.
    PMID: 33612798
    Storage of dengue virus (DENV) culture stocks in -80°C is a common laboratory practice to maintain the viability of the virus for long-term usage. However, the efficiency of this method could still be hindered by multiple factors. In our laboratory, we observed a constant and substantial deterioration in the titer of DENV in Vero culture supernatant stored in -80°C. Such incident had badly hampered the laboratory work and prompted an investigation to determine the cause. DENV isolates representing all four serotypes were propagated and the culture supernatants were harvested and stored in aliquots of original stock and 10 fold dilutions (10-1 -10-4). DENV titer in these stocks was determined prior to storage and reassessed on the third and sixth month of storage by focus forming unit assay (FFUA). The result demonstrated a constant preservation of titer ranging from 104 ffu/ml to 105 ffu/ml in the diluted DENV virus culture stocks of 10-1, and 10-2 of DENV1-4, a minor reduction of titer from 103 ffu/ml to 102 ffu/ml at dilution 10-3 for DENV4 only and complete deterioration in undiluted culture stock and lower dilution (10-4) within 6 months of storage in -80°C for all serotypes. It is recommended that propagated DENV in Vero cells are stored in 10 fold dilutions as compared to the original form to preserve the titer for long-term usage.
  13. Lam JY, Low GK, Chee HY
    PLoS Negl Trop Dis, 2020 02;14(2):e0008074.
    PMID: 32049960 DOI: 10.1371/journal.pntd.0008074
    BACKGROUND: Leptospirosis is often difficult to diagnose because of its nonspecific symptoms. The drawbacks of direct isolation and serological tests have led to the increased development of nucleic acid-based assays, which are more rapid and accurate. A meta-analysis was performed to evaluate the diagnostic accuracy of genetic markers for the detection of Leptospira in clinical samples.

    METHODOLOGY AND PRINCIPLE FINDINGS: A literature search was performed in Scopus, PubMed, MEDLINE and non-indexed citations (via Ovid) by using suitable keyword combinations. Studies evaluating the performance of nucleic acid assays targeting leptospire genes in human or animal clinical samples against a reference test were included. Of the 1645 articles identified, 42 eligible studies involving 7414 samples were included in the analysis. The diagnostic performance of nucleic acid assays targeting the rrs, lipL32, secY and flaB genes was pooled and analyzed. Among the genetic markers analyzed, the secY gene showed the highest diagnostic accuracy measures, with a pooled sensitivity of 0.56 (95% CI: 0.50-0.63), a specificity of 0.98 (95% CI: 0.97-0.98), a diagnostic odds ratio of 46.16 (95% CI: 6.20-343.49), and an area under the curve of summary receiver operating characteristics curves of 0.94. Nevertheless, a high degree of heterogeneity was observed in this meta-analysis. Therefore, the present findings here should be interpreted with caution.

    CONCLUSION: The diagnostic accuracies of the studies examined for each genetic marker showed a significant heterogeneity. The secY gene exhibited higher diagnostic accuracy measures compared with other genetic markers, such as lipL32, flaB, and rrs, but the difference was not significant. Thus, these genetic markers had no significant difference in diagnostic accuracy for leptospirosis. Further research into these genetic markers is warranted.

  14. Maryam M, Tan SL, Crouse KA, Mohamed Tahir MI, Chee HY
    Turk J Chem, 2020;44(5):1395-1409.
    PMID: 33488239 DOI: 10.3906/kim-2006-22
    A series of Schiff bases have been successfully synthesized through the acid-catalyzed condensation of S-substituted dithiocarbazates and three enantiomerically pure monoterpenes, (1 R )-(+)-camphor, (1 S )-(-)-camphor, (1 R )-(-)-camphorquinone, (1 S )-(+)-camphorquinone, ( R )-(-)-carvone and ( S )-(+)-carvone. Spectroscopic results revealed that the Schiff bases containing camphor or carvone likely adopted an E -configuration along the characteristic imine bond while those containing camphorquinone assumed a Z -configuration. The antidengue potential of these compounds was evaluated based on DENV 2 caused cytopathic effect (CPE) reduction-based in vitro evaluation. The compounds were validated through secondary foci forming unit reduction assay (FFURA). Compounds were also tested for their cytotoxicity against Vero cells. The compounds showed variable degrees of antiviral activity with the camphor compounds displaying the highest antidengue potential. The enantiomers of the compounds behaved almost similarly during the antiviral evaluation.
  15. Soo KM, Tham CL, Khalid B, Basir R, Chee HY
    Trop Biomed, 2019 Dec 01;36(4):1027-1037.
    PMID: 33597472
    Dengue is a common infection, caused by dengue virus. There are four different dengue serotypes, with different capacity to cause severe dengue infections. Besides, secondary infections with heterologous serotypes, concurrent infections of multiple dengue serotypes may alter the severity of dengue infection. This study aims to compare the severity of single infection and concurrent infections of different combinations of dengue serotypes in-vitro. Human mast cells (HMC)-1.1 were infected with single and concurrent infections of multiple dengue serotypes. The infected HMC-1.1 supernatant was then added to human umbilical cord vascular endothelial cells (HUVEC) and severity of dengue infections was measured by the percentage of transendothelial electrical resistance (TEER). Levels of IL10, CXCL10 and sTRAIL in HMC-1.1 and IL-8, IL-10 and CXCL10 in HUVEC culture supernatants were measured by the ELISA assays. The result showed that the percentage of TEER values were significantly lower in single infections (p< 0.05), compared to concurrent infections on day 2 and 3, indicating that single infection increase endothelial permeability greater than concurrent infections. IL-8 showed moderate correlation with endothelial permeability (r > 0.4), indicating that IL-8 may be suitable as an in-vitro severity biomarker. In conclusion, this in-vitro model presented few similarities with regards to the conditions in dengue patients, suggesting that it could serve as a severity model to test for severity and levels of severity biomarkers upon different dengue virus infections.
  16. Mustapha Kamil Y, Al-Rekabi SH, Yaacob MH, Syahir A, Chee HY, Mahdi MA, et al.
    Sci Rep, 2019 09 17;9(1):13483.
    PMID: 31530893 DOI: 10.1038/s41598-019-49891-7
    The exponential escalation of dengue cases has indeed become a global health crisis. This work elaborates on the development of a biofunctionalized tapered optical fiber (TOF) based sensor with the integration of polyamidoamine (PAMAM) dendrimer for the detection of dengue E protein. The dimension of the TOF generated an evanescent field that was sensitive to any changes in the external medium while the integration of PAMAM promoted more adhesion of bio-recognition molecules; anti-DENV II E protein antibodies; that were complementary to the targeted protein. This in return created more active sites for the absorption of DENV II E proteins onto the tapered region. The resolution and detection limit of the sensor are 19.53 nm/nM and 1 pM, respectively with Kd = 1.02 × 10-10 M.
  17. Tan JW, Wan Zahidi NF, Kow ASF, Soo KM, Shaari K, Israf DA, et al.
    Biosci Rep, 2019 06 28;39(6).
    PMID: 31110077 DOI: 10.1042/BSR20181273
    Mast cells (MCs), a type of immune effector cell, have recently become recognized for their ability to cause vascular leakage during dengue virus (DENV) infection. Although MC stabilizers have been reported to attenuate DENV induced infection in animal studies, there are limited in vitro studies on the use of MC stabilizers against DENV induced MC degranulation. 2,4,6-trihydroxy-3-geranyl acetophenone (tHGA) has been reported to be a potential MC stabilizer by inhibiting IgE-mediated MC activation in both cellular and animal models. The present study aims to establish an in vitro model of DENV3-induced RBL-2H3 cells using ketotifen fumarate as a control drug, as well as to determine the effect of tHGA on the release of MC mediators upon DENV infection. Our results demonstrated that the optimal multiplicities of infection (MOI) were 0.4 × 10-2 and 0.8 × 10-2 focus forming units (FFU)/cell. Ketotifen fumarate was proven to attenuate DENV3-induced RBL-2H3 cells degranulation in this in vitro model. In contrast, tHGA was unable to attenuate the release of both β-hexosaminidase and tumor necrosis factor (TNF)-α. Nonetheless, our study has successfully established an in vitro model of DENV3-induced RBL-2H3 cells, which might be useful for the screening of potential MC stabilizers for anti-dengue therapies.
  18. Aliyu IA, Ling KH, Md Hashim N, Chee HY
    Rev Med Virol, 2019 05;29(3):e2038.
    PMID: 30746844 DOI: 10.1002/rmv.2038
    Annexin A2 is a membrane scaffolding and binding protein, which mediated various cellular events. Its functions are generally affected by cellular localization. In the cytoplasm, they interacted with different phospholipid membranes in Ca2+ -dependent manner and play vital roles including actin binding, remodeling and dynamics, cytoskeletal rearrangement, and lipid-raft microdomain formation. However, upon cell exposure to certain stimuli, annexin A2 translocates to the external leaflets of the plasma membrane where annexin A2 was recently reported to serve as a virus receptor, play an important role in the formation of virus replication complex, or implicated in virus assembly and budding. Here, we review some of annexin A2 roles in virus infections and the potentiality of targeting annexin A2 in the design of novel and promising antivirus agent that may have a broader consequence in virus therapy.
  19. Fish-Low CY, Abubakar S, Othman F, Chee HY
    Malays J Pathol, 2019 Apr;41(1):41-46.
    PMID: 31025636
    INTRODUCTION: Dengue virus (DENV), the causative agent of dengue disease exists in sylvatic and endemic ecotypes. The cell morphological changes and viral morphogenesis of two dengue ecotypes were examined at the ultrastructural level to identify potential similarities and differences in the surrogate model of enzootic host.

    MATERIALS AND METHODS: Vero cells were inoculated with virus at a multiplicity of infection (MOI) of 0.1. Cell cultures were harvested over a time course and processed for transmission electron microscopic imaging.

    RESULTS: The filopodia protrusions on cell periphery preceded virus entry. Additionally, sylvatic DENV infection was found spreading slower than the endemic DENV. Morphogenesis of both dengue ecotypes was alike but at different level of efficiency in the permissive cells.

    CONCLUSIONS: This is the first ultrastructural study on sylvatic DENV and this comparative study revealed the similarities and differences of cellular responses and morphogenesis of two dengue ecotypes in vitro. The study revealed the weaker infectivity of sylvatic DENV in the surrogate model of enzootic host, which supposed to support better replication of enzootic DENV than endemic DENV.

  20. Ghani NA, Shohaimi S, Hee AK, Chee HY, Emmanuel O, Alaba Ajibola LS
    Trop Med Infect Dis, 2019 Feb 15;4(1).
    PMID: 30781369 DOI: 10.3390/tropicalmed4010037
    BACKGROUND: Dengue has affected more than one-third of the world population and Malaysia has recorded an increase in the number of dengue cases since 2012. Selangor state recorded the highest number of dengue cases in Malaysia. Most of the dengue infections occur among people living in hotspot areas of dengue. This study aims to compare Knowledge, Attitude, and Practice among communities living in hotspot and non-hotspot dengue areas.

    METHOD: Communities living in 20 hotspot and 20 non-hotspot areas in Selangor were chosen in this study where 406 participants were randomly selected to answer questionnaires distributed at their housing areas. Total marks of each categories were compared using t-test.

    RESULT: Results show that there were significant mean differences in marks in Knowledge (p value: 0.003; 15.41 vs. 14.55) and Attitude (p value: < 0.001; 11.41 vs. 10.33), but not Practice (p value 0.101; 10.83 vs. 10.47) categories between communities of non-hotspot and hotspot areas. After considering two confounding variables which are education level and household income, different mean marks are found to be significant in Knowledge when education level acts as a covariate and Attitude when both act as covariates.

    CONCLUSION: Overall results show that people living in non-hotspot areas had better knowledge and attitude than people living in hotspot areas, but no difference was found in practice. This suggests that public health education should be done more frequently with people with a low education background and low household income, especially in hotspot areas to fight dengue outbreak and make dengue cases decrease effectively.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links