Displaying publications 1 - 20 of 37 in total

Abstract:
Sort:
  1. Aji G, Huang Y, Ng ML, Wang W, Lan T, Li M, et al.
    Proc Natl Acad Sci U S A, 2020 09 29;117(39):24434-24442.
    PMID: 32917816 DOI: 10.1073/pnas.2007856117
    Sphingolipid dysregulation is often associated with insulin resistance, while the enzymes controlling sphingolipid metabolism are emerging as therapeutic targets for improving insulin sensitivity. We report herein that sphingosine kinase 2 (SphK2), a key enzyme in sphingolipid catabolism, plays a critical role in the regulation of hepatic insulin signaling and glucose homeostasis both in vitro and in vivo. Hepatocyte-specific Sphk2 knockout mice exhibit pronounced insulin resistance and glucose intolerance. Likewise, SphK2-deficient hepatocytes are resistant to insulin-induced activation of the phosphoinositide 3-kinase (PI3K)-Akt-FoxO1 pathway and elevated hepatic glucose production. Mechanistically, SphK2 deficiency leads to the accumulation of sphingosine that, in turn, suppresses hepatic insulin signaling by inhibiting PI3K activation in hepatocytes. Either reexpressing functional SphK2 or pharmacologically inhibiting sphingosine production restores insulin sensitivity in SphK2-deficient hepatocytes. In conclusion, the current study provides both experimental findings and mechanistic data showing that SphK2 and sphingosine in the liver are critical regulators of insulin sensitivity and glucose homeostasis.
  2. Che X, Guo Z, Chen Q
    Front Psychol, 2021;12:625584.
    PMID: 34305701 DOI: 10.3389/fpsyg.2021.625584
    Aiming to reduce the difficulty of managing and motivating knowledge workers (k-workers), and promote the psychological well-being of them in Chinese hospitals, this study examines how k-workers' leader-member exchange (LMX) influences their task performance and the mediation effect of organizational citizenship behavior (OCB). Through a self-administered survey, valid questionnaires were collected from 384 k-workers in Chinese hospitals, and partial least squares structural equation modeling was employed for data analysis. The findings show that LMX is positively related to OCB and task performance, and that OCB mediates the relationship between LMX and task performance. This research has theoretical implications and also provides practical suggestions on how to manage, motivate, and inspire k-workers, and promote the psychological well-being of them, and finally enhance the organizational performance in Chinese hospitals.
  3. Chen Q, Narayanan K
    Methods Mol Biol, 2015;1227:27-54.
    PMID: 25239740 DOI: 10.1007/978-1-4939-1652-8_2
    Recombineering is a powerful genetic engineering technique based on homologous recombination that can be used to accurately modify DNA independent of its sequence or size. One novel application of recombineering is the assembly of linear BACs in E. coli that can replicate autonomously as linear plasmids. A circular BAC is inserted with a short telomeric sequence from phage N15, which is subsequently cut and rejoined by the phage protelomerase enzyme to generate a linear BAC with terminal hairpin telomeres. Telomere-capped linear BACs are protected against exonuclease attack both in vitro and in vivo in E. coli cells and can replicate stably. Here we describe step-by-step protocols to linearize any BAC clone by recombineering, including inserting and screening for presence of the N15 telomeric sequence, linearizing BACs in vivo in E. coli, extracting linear BACs, and verifying the presence of hairpin telomere structures. Linear BACs may be useful for functional expression of genomic loci in cells, maintenance of linear viral genomes in their natural conformation, and for constructing innovative artificial chromosome structures for applications in mammalian and plant cells.
  4. Chen Q, Lee CW, Sim EU, Narayanan K
    Hum Gene Ther Methods, 2014 Feb;25(1):40-7.
    PMID: 24134118 DOI: 10.1089/hgtb.2012.188
    Direct protein delivery into the cytosol of mammalian cells by invasive Escherichia coli (E. coli) bacterial vector will bypass the need to achieve nuclear entry and transcription of DNA, a major hurdle that is known to seriously limit gene transfer. The bacterial vector is induced to express the protein during its growth phase, before presentation for entry into mammalian cells and release of its content into the cellular environment. For this class of vector, crossing the plasma membrane becomes the primary step that determines the success of protein delivery. Yet, how the mechanics of protein expression within the vector affect its entry into the host is poorly understood. We found the vector's effectiveness to enter HeLa cells diminished together with its viability when phage N15 protelomerase (TelN) expression was induced continuously in the invasive E. coli despite producing an abundant amount of functional protein. By comparison, shorter induction, even as little as 3 hr, produced sufficient amounts of functional TelN and showed more effective invasion of HeLa cells, comparable to that of uninduced invasive E. coli. These results demonstrate that brief induction of protein expression during vector growth is essential for optimal entry into mammalian cells, an important step for achieving bacteria-mediated protein delivery.
  5. Chen Q, Narayanan K
    Anal Biochem, 2011 Jul 1;414(1):169-71.
    PMID: 21396906 DOI: 10.1016/j.ab.2011.03.006
    The phage N15 protelomerase enzyme (TelN) is essential for the replication of its genome by resolution of its telRL domain, located within a telomerase occupancy site (tos), into hairpin telomeres. Isolation of TelN for in vitro processing of tos, however, is a highly complex process, requiring multiple purification steps. In this study a simplified protocol for crude total protein extraction is described that retains the tos-cleaving activity of TelN for at least 4 weeks, greatly simplifying in vitro testing of its activity. This protocol may be extended for functional analysis of other phage and bacterial proteins, particularly DNA-processing enzymes.
  6. Chen Q, Toy JYH, Seta C, Yeo TC, Huang D
    Front Nutr, 2021;8:701114.
    PMID: 34458304 DOI: 10.3389/fnut.2021.701114
    A collection of tropical medicinal plants from East Malaysia's rainforests are used by indigenous tribes for their curative properties. Despite their purported healing properties, these forest plant species are largely unexplored and hence remain virtually unknown to the outside world. In this study, antidiabetic properties of Psychotria viridiflora, a plant used to treat diabetes by a local community in Sarawak, Malaysia were investigated. Ethyl acetate (EA) extract of P. viridiflora stem was found to exhibit high starch hydrolase inhibition activity with an IC50 value of 15.4 ± 2.1 μg/ml against porcine α-amylase and an IC50 value of 32.4 ± 3.7 μg/ml against rat intestinal α-glucosidase. A complex mixture of A-type oligomeric proanthocyanidins containing (epi)fisetinidol, (epi)afzelechin, (epi)guibourtinidol, and (epi)catechin were found. These compounds may be responsible for the starch hydrolase inhibition activity. Ethyl acetate (EA) extract of P. viridiflora stem was incorporated into wheat and rice flour to reformulate noodles with slow digestibility and was assessed under in vitro simulated gastrointestinal conditions. A dose-dependent effect on digestibility was observed for both noodles upon incorporation of 1-6% (w/w) of EA extract, with noodles containing 6% (w/w) extract exhibiting the greatest reduction in digestibility. As compared to rice noodles containing 6% extract (31.16% inhibition), wheat noodles with the same extract concentration had a smaller decline in digestibility (27.25% inhibition) after 180 min. Overall, our findings highlight the potential of P. viridiflora in the prevention of postprandial hyperglycaemia.
  7. Chen Q, Lai S, Dong L, Liu Y, Pan D, Wu Z, et al.
    Food Chem, 2024 Jan 01;430:137049.
    PMID: 37544157 DOI: 10.1016/j.foodchem.2023.137049
    The ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS) method was built to quantify the casein glycomacropeptide (CGMP) in bovine dairy products accurately based on targeted proteomics. Qualitative analysis of theoretical peptides was carried out using high-resolution mass spectrometry (HRMS) and protein software. Isotope-labeled characteristic peptides were acquired via the labeled amino acid condensation method to correct the matrix effects. Peptide MAIPPK was the representative characteristic peptide for distinguishing the CGMP from κ-casein through trypsin digestion. After optimizing the pre-treatment conditions, the final 8% oxidant concentration was selected and the 10% formic acid concentration with 2.5 h oxidation time. Moreover, the results of methodological verification showed that the recovery rate was 103.7%, meanwhile the precision of inter-day and intra-day was less than 5%. In conclusion, the research demonstrated the characteristic peptide MAIPPK could quantitatively applied to detect CGMP in dairy products.
  8. Chen Q, Dong L, Li Y, Liu Y, Xia Q, Sang S, et al.
    PMID: 36803106 DOI: 10.1080/10408398.2023.2179969
    Ovalbumin (OVA) is the most abundant protein in egg white, with excellent functional properties (e.g., gelling, foaming, emulsifying properties). Nevertheless, OVA has strong allergenicity, which is usually mediated by specific IgE thus results in gut microbiota dysbiosis and causes atopic dermatitis, asthma, and other inflammation actions. Processing technologies and the interactions with other active ingredients can influence the functional properties and allergic epitopes of OVA. This review focuses on the non-thermal processing technologies effects on the functional properties and allergenicity of OVA. Moreover, the research advance about immunomodulatory mechanisms of OVA-mediated food allergy and the role of gut microbiota in OVA allergy was summarized. Finally, the interactions between OVA and active ingredients (such as polyphenols and polysaccharides) and OVA-based delivery systems construction are summarized. Compared with traditional thermal processing technologies, novel non-thermal processing techniques have less damage to OVA nutritional value, which also improve OVA properties. OVA can interact with various active ingredients by covalent and non-covalent interactions during processing, which can alter the structure or allergic epitopes to affect OVA/active components properties. The interactions can promote OVA-based delivery systems construction, such as emulsions, hydrogels, microencapsulation, nanoparticles to encapsulate bioactive components and monitor freshness for improving foods quality and safety.
  9. Dong L, Li Y, Chen Q, Liu Y, Qiao Z, Sang S, et al.
    Food Chem, 2023 Aug 15;417:135861.
    PMID: 36906946 DOI: 10.1016/j.foodchem.2023.135861
    Advanced glycosylation end products (AGEs) are a series of complex compounds which generate in the advanced phase of Maillard reaction, which can pose a non-negligible risk to human health. This article systematically encompasses AGEs in milk and dairy products under different processing conditions, influencing factors, inhibition mechanism and levels among the different categories of dairy products. In particular, it describes the effects of various sterilization techniques on the Maillard reaction. Different processing techniques have a significant effect on AGEs content. In addition, it clearly articulates the determination methods of AGEs and even discusses its immunometabolism via gut microbiota. It is observed that the metabolism of AGEs can affect the composition of the gut microbiota, which further has an impact on intestinal function and the gut-brain axis. This research also provides a suggestion for AGEs mitigation strategies, which are beneficial to optimize the dairy production, especially innovative processing technology application.
  10. Dong L, Zhang Y, Li Y, Liu Y, Chen Q, Liu L, et al.
    Food Funct, 2023 Nov 13;14(22):10221-10231.
    PMID: 37916290 DOI: 10.1039/d3fo02474a
    Heat sterilization of dairy products can promote the formation of advanced glycation end products (AGEs), protein oxidation products (POPs) and α-dicarbonyl compounds, which have a significant influence on health due to the close association of these products with diabetes complications. In this study, eight oat phenolic acids were first analyzed for their inhibitory effect against AGEs formation. Due to their strong inhibitory effects and structural differences, caffeic acid (CA) and gallic acid (GA) were further selected to assess their anti-glycosylation mechanisms using spectroscopy, chromatography and molecular docking. CA/GA reduced the production of total AGEs and POPs in various bovine milk simulation models and protected whey proteins from structural modifications, oxidation, and cross-linking. Comparative analyses showed a structure-effect relationship between CA/GA and AGEs inhibition. Oat phenolic acids against AGEs and POPs might be related to the unique bonding of key amino acid residues in whey proteins, the inhibitory role of early fructosamine and the trapping of reactive α-dicarbonyl groups to form adducts. In conclusion, oat phenolic acids might present a promising dietary strategy to alleviate AGEs production and glycation of proteins in dairy products upon storage.
  11. Engels S, Fong LSRZ, Chen Q, Leng MJ, McGowan S, Idris M, et al.
    Environ Pollut, 2018 Apr;235:907-917.
    PMID: 29353806 DOI: 10.1016/j.envpol.2018.01.007
    Fossil fuel combustion leads to increased levels of air pollution, which negatively affects human health as well as the environment. Documented data for Southeast Asia (SEA) show a strong increase in fossil fuel consumption since 1980, but information on coal and oil combustion before 1980 is not widely available. Spheroidal carbonaceous particles (SCPs) and heavy metals, such as mercury (Hg), are emitted as by-products of fossil fuel combustion and may accumulate in sediments following atmospheric fallout. Here we use sediment SCP and Hg records from several freshwater lentic ecosystems in SEA (Malaysia, Philippines, Singapore) to reconstruct long-term, region-wide variations in levels of these two key atmospheric pollution indicators. The age-depth models of Philippine sediment cores do not reach back far enough to date first SCP presence, but single SCP occurrences are first observed between 1925 and 1950 for a Malaysian site. Increasing SCP flux is observed at our sites from 1960 onward, although individual sites show minor differences in trends. SCP fluxes show a general decline after 2000 at each of our study sites. While the records show broadly similar temporal trends across SEA, absolute SCP fluxes differ between sites, with a record from Malaysia showing SCP fluxes that are two orders of magnitude lower than records from the Philippines. Similar trends in records from China and Japan represent the emergence of atmospheric pollution as a broadly-based inter-region environmental problem during the 20th century. Hg fluxes were relatively stable from the second half of the 20th century onward. As catchment soils are also contaminated with atmospheric Hg, future soil erosion can be expected to lead to enhanced Hg flux into surface waters.
  12. Fu X, Du B, Meng Y, Li Y, Zhu X, Ou Z, et al.
    PMID: 36883483 DOI: 10.1039/d2em00480a
    Rhinitis is one of the most prevalent chronic diseases globally. Microbiome exposure affects the occurrence of rhinitis. However, previous studies did not differentiate allergic rhinitis (AR) and non-allergic rhinitis (NAR) in the microbial association analysis. In this study, we investigate 347 students in 8 junior high schools, Terengganu, Malaysia, who were categorized as healthy (70.9%), AR (13.8%) and NAR (15.3%) based on a self-administered questionnaire and skin prick tests of pollen, pet, mould and house dust mite allergens. Classroom microbial and metabolite exposure in vacuumed dust was characterized by PacBio long-read amplicon sequencing, quantitative PCR and LC-MS-based untargeted metabolomics. Our findings indicate a similar microbial association pattern between AR and NAR. The richness in Gammaproteobacteria was negatively associated with AR and NAR symptoms, whereas total fungal richness was positively associated with AR and NAR symptoms (p < 0.05). Brasilonema bromeliae and Aeromonas enteropelogenes were negatively associated with AR and NAR, and Deinococcus was positively associated with AR and NAR (p < 0.01). Pipecolic acid was protectively associated with AR and NAR symptoms (OR = 0.06 and 0.13, p = 0.009 and 0.045). A neural network analysis showed that B. bromeliae was co-occurring with pipecolic acid, suggesting that the protective role of this species may be mediated by releasing pipecolic acid. Indoor relative humidity and the weight of vacuum dust were associated with AR and NAR, respectively (p < 0.05), but the health effects were mediated by two protective bacterial species, Aliinostoc morphoplasticum and Ilumatobacter fluminis. Overall, our study reported a similar microbial association pattern between AR and NAR and also revealed the complex interactions between microbial species, environmental characteristics, and rhinitis symptoms.
  13. Gu H, Huang X, Chen Q, Sun Y, Tan CP
    J Fluoresc, 2020 May;30(3):687-694.
    PMID: 32378115 DOI: 10.1007/s10895-020-02546-7
    The influences of metal atoms on optimized geometry structures, relative energies, frontline molecular orbitals, and binding energies of metalloporphyrin-based fluorescent array sensor were systematically investigated by density functional theory (DFT) at B3LYP/LAN2DZ level. DFT calculated results reveal that the selected metal atoms in the center of the metalloporphyrin plane provide difference performances of metalloporphyrin-based fluorescent array sensor for the rapid determination of trimethylamine. The calculated binding energies have displayed in the following order at the most stable states: zinc porphyrin (ZnP) 
  14. Hartman CA, Larsson H, Vos M, Bellato A, Libutzki B, Solberg BS, et al.
    Neurosci Biobehav Rev, 2023 Aug;151:105209.
    PMID: 37149075 DOI: 10.1016/j.neubiorev.2023.105209
    Knowledge on psychiatric comorbidity in adult ADHD is essential for prevention, detection, and treatment of these conditions. This review (1) focuses on large studies (n > 10,000; surveys, claims data, population registries) to identify (a) overall, (b) sex- and (c) age-specific patterns of comorbidity of anxiety disorders (ADs), major depressive disorder (MDD), bipolar disorder (BD) and substance use disorders (SUDs) in adults with ADHD relative to adults without ADHD; and (2) describes methodological challenges relating to establishing comorbidity in ADHD in adults as well as priorities for future research. Meta-analyses (ADHD: n = 550,748; no ADHD n = 14,546,814) yielded pooled odds ratios of 5.0(CI:3.29-7.46) for ADs, 4.5(CI:2.44-8.34) for MDD, 8.7(CI:5.47-13.89) for BD and 4.6(CI:2.72-7.80) for SUDs, indicating strong differences in adults with compared to adults without ADHD. Moderation by sex was not found: high comorbidity held for both men and women with sex-specific patterns as in the general population: higher prevalences of ADs, MDD and BD in women and a higher prevalence of SUDs in men. Insufficient data on different phases of the adult lifespan prevented conclusions on developmental changes in comorbidity. We discuss methodological challenges, knowledge gaps, and future research priorities.
  15. He MQ, Shen JY, Petrović AP, He QL, Liu HC, Zheng Y, et al.
    Sci Rep, 2016 09 02;6:32508.
    PMID: 27587000 DOI: 10.1038/srep32508
    In the interfacial superconductor Bi2Te3/Fe1+yTe, two dimensional superconductivity occurs in direct vicinity to the surface state of a topological insulator. If this state were to become involved in superconductivity, under certain conditions a topological superconducting state could be formed, which is of high interest due to the possibility of creating Majorana fermionic states. We report directional point-contact spectroscopy data on the novel Bi2Te3/Fe1+yTe interfacial superconductor for a Bi2Te3 thickness of 9 quintuple layers, bonded by van der Waals epitaxy to a Fe1+yTe film at an atomically sharp interface. Our data show highly unconventional superconductivity, which appears as complex as in the cuprate high temperature superconductors. A very large superconducting twin-gap structure is replaced by a pseudogap above ~12 K which persists up to 40 K. While the larger gap shows unconventional order parameter symmetry and is attributed to a thin FeTe layer in proximity to the interface, the smaller gap is associated with superconductivity induced via the proximity effect in the topological insulator Bi2Te3.
  16. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al.
    Autophagy, 2016;12(1):1-222.
    PMID: 26799652 DOI: 10.1080/15548627.2015.1100356
  17. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
  18. Li G, Li P, Chen Q, Thu HE, Hussain Z
    Curr Drug Deliv, 2019;16(2):94-110.
    PMID: 30360738 DOI: 10.2174/1567201815666181024142354
    BACKGROUND: Owing to their great promise in the spinal surgeries, bone graft substitutes have been widely investigated for their safety and clinical potential. By the current advances in the spinal surgery, an understanding of the precise biological mechanism of each bone graft substitute is mandatory for upholding the induction of solid spinal fusion.

    OBJECTIVE: The aim of the present review is to critically discuss various surgical implications and level of evidence of most commonly employed bone graft substitutes for spinal fusion.

    METHOD: Data was collected via electronic search using "PubMed", "SciFinder", "ScienceDirect", "Google Scholar", "Web of Science" and a library search for articles published in peer-reviewed journals, conferences, and e-books.

    RESULTS: Despite having exceptional inherent osteogenic, osteoinductive, and osteoconductive features, clinical acceptability of autografts (patient's own bone) is limited due to several perioperative and postoperative complications i.e., donor-site morbidities and limited graft supply. Alternatively, allografts (bone harvested from cadaver) have shown great promise in achieving acceptable bone fusion rate while alleviating the donor-site morbidities associated with implantation of autografts. As an adjuvant to allograft, demineralized bone matrix (DBM) has shown remarkable efficacy of bone fusion, when employed as graft extender or graft enhancer. Recent advances in recombinant technologies have made it possible to implant growth and differentiation factors (bone morphogenetic proteins) for spinal fusion.

    CONCLUSION: Selection of a particular bone grafting biotherapy can be rationalized based on the level of spine fusion, clinical experience and preference of orthopaedic surgeon, and prevalence of donor-site morbidities.

  19. Li G, Li P, Chen Q, Mani MP, Jaganathan SK
    PeerJ, 2019;7:e6986.
    PMID: 31179183 DOI: 10.7717/peerj.6986
    Traditionally, in the Asian continent, oils are a widely accepted choice for alleviating bone-related disorders. The design of scaffolds resembling the extracellular matrix (ECM) is of great significance in bone tissue engineering. In this study, a multicomponent polyurethane (PU), canola oil (CO) and neem oil (NO) scaffold was developed using the electrospinning technique. The fabricated nanofibers were subjected to various physicochemical and biological testing to validate its suitability for bone tissue engineering. Morphological analysis of the multicomponent scaffold showed a reduction in fiber diameter (PU/CO-853 ± 141.27 nm and PU/CO/NO-633 ± 137.54 nm) compared to PU (890 ± 116.911 nm). The existence of CO and NO in PU matrix was confirmed by an infrared spectrum (IR) with the formation of hydrogen bond. PU/CO displayed a mean contact angle of 108.7° ± 0.58 while the PU/CO/NO exhibited hydrophilic nature with an angle of 62.33° ± 2.52. The developed multicomponent also exhibited higher thermal stability and increased mechanical strength compared to the pristine PU. Atomic force microscopy (AFM) analysis depicted lower surface roughness for the nanocomposites (PU/CO-389 nm and PU/CO/NO-323 nm) than the pristine PU (576 nm). Blood compatibility investigation displayed the anticoagulant nature of the composites. Cytocompatibility studies revealed the non-toxic nature of the developed composites with human fibroblast cells (HDF) cells. The newly developed porous PU nanocomposite scaffold comprising CO and NO may serve as a potential candidate for bone tissue engineering.
  20. Li Y, Dong L, Liu Y, Chen Q, Wu Z, Liu L, et al.
    Food Chem, 2024 Mar 01;435:137572.
    PMID: 37778268 DOI: 10.1016/j.foodchem.2023.137572
    The effects of covalent binding of protocatechuic acid (PA) and gallic acid (GA) to lactoferrin (LF) on the structure, functional, and antioxidant properties of the protein conjugate were investigated. These protein-phenolic conjugates were produced by laccase cross-linking and ultrasound-assisted free radical grafting, which were characterized using turbidity, particle size, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses. Structural changes in conjugates were monitored by endogenous fluorescence spectroscopy, fourier transform infrared spectroscopy (FTIR), and circular dichroism (CD). The antioxidant capacities and pH stability were determined using DPPH, ABTS, FRAP, and potentiometric analysis. The enzymatic cross-linking and free radical grafting yielded LF-PA/GA conjugates with altered hydrodynamic diameter and zeta-potential. Spectroscopic and chromatographic analyses revealed that binding to PA/GA altered the molecular structure of LF, with a decrease in LF isoelectric point post binding to PA/GA, without affecting antioxidant activities. In conclusion, LF-PA/GA conjugates present potential applications in the food industry.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links