Displaying publications 1 - 20 of 37 in total

Abstract:
Sort:
  1. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al.
    Autophagy, 2016;12(1):1-222.
    PMID: 26799652 DOI: 10.1080/15548627.2015.1100356
  2. Engels S, Fong LSRZ, Chen Q, Leng MJ, McGowan S, Idris M, et al.
    Environ Pollut, 2018 Apr;235:907-917.
    PMID: 29353806 DOI: 10.1016/j.envpol.2018.01.007
    Fossil fuel combustion leads to increased levels of air pollution, which negatively affects human health as well as the environment. Documented data for Southeast Asia (SEA) show a strong increase in fossil fuel consumption since 1980, but information on coal and oil combustion before 1980 is not widely available. Spheroidal carbonaceous particles (SCPs) and heavy metals, such as mercury (Hg), are emitted as by-products of fossil fuel combustion and may accumulate in sediments following atmospheric fallout. Here we use sediment SCP and Hg records from several freshwater lentic ecosystems in SEA (Malaysia, Philippines, Singapore) to reconstruct long-term, region-wide variations in levels of these two key atmospheric pollution indicators. The age-depth models of Philippine sediment cores do not reach back far enough to date first SCP presence, but single SCP occurrences are first observed between 1925 and 1950 for a Malaysian site. Increasing SCP flux is observed at our sites from 1960 onward, although individual sites show minor differences in trends. SCP fluxes show a general decline after 2000 at each of our study sites. While the records show broadly similar temporal trends across SEA, absolute SCP fluxes differ between sites, with a record from Malaysia showing SCP fluxes that are two orders of magnitude lower than records from the Philippines. Similar trends in records from China and Japan represent the emergence of atmospheric pollution as a broadly-based inter-region environmental problem during the 20th century. Hg fluxes were relatively stable from the second half of the 20th century onward. As catchment soils are also contaminated with atmospheric Hg, future soil erosion can be expected to lead to enhanced Hg flux into surface waters.
  3. Tseng ML, Chang CH, Lin CR, Wu KJ, Chen Q, Xia L, et al.
    Environ Sci Pollut Res Int, 2020 Sep;27(27):33543-33567.
    PMID: 32572746 DOI: 10.1007/s11356-020-09284-0
    This study conducts a comprehensive literature review of articles on the triple bottom line (TBL) published from January 1997 to September 2018 to provide significant insights and support to guide further discussion. There were three booms in TBL publications, occurring in 2003, 2011, and 2015, and many articles attempt to address the issue of sustainability by employing the TBL. This literature analysis includes 720, 132, and 58 articles from the Web of Science (WOS), Inspec, and Scopus databases, respectively, and reveals the gaps in existing research. To discover the barriers and points of overlap, these articles are categorized into six aspects of the TBL: economic, environmental, social, operations, technology, and engineering. Examining the top 3 journals in terms of published articles on each aspect reveals the research trends and gaps. The findings provide solid evidence confirming the argument that the TBL as currently defined is insufficient to cover the entire concept of sustainability. The social and engineering aspects still require more discussion to support the linkage of the TBL and to reinforce its theoretical basis. Additionally, to discover the gaps in the data sources, theories applied, methods adopted, and types of contributions, this article summarizes 82 highly cited articles covering each aspect. This article offers theoretical insights by identifying the top contributing countries, institutions, authors, keyword networks, and authorship networks to encourage scholars to push the current discussion further forward, and it provides practical insights to bridge the gap between theory and practice for enhancing the efficiency and effectiveness of improvements.
  4. Liu Y, Yan N, Chen Q, Dong L, Li Y, Weng P, et al.
    PMID: 37552798 DOI: 10.1080/10408398.2023.2239350
    Citrus polyphenols can modulate gut microbiota and such bi-directional interaction that can yield metabolites such as short-chain fatty acids (SCFAs) to aid in gut homeostasis. Such interaction provides citrus polyphenols with powerful prebiotic potential, contributing to guts' health status and metabolic regulation. Citrus polyphenols encompass unique polymethoxy flavonoids imparting non-polar nature that improve their bioactivities and ability to penetrate the blood-brain barrier. Green extraction technology targeting recovery of these polyphenols has received increasing attention due to its advantages of high extraction yield, short extraction time, low solvent consumption, and environmental friendliness. However, the low bioavailability of citrus polyphenols limits their applications in extraction from citrus by-products. Meanwhile, nano-encapsulation technology may serve as a promising approach to improve citrus polyphenols' bioavailability. As citrus polyphenols encompass multiple hydroxyl groups, they are potential to interact with bio-macromolecules such as proteins and polysaccharides in nano-encapsulated systems that can improve their bioavailability. This multifaceted review provides a research basis for the green and efficient extraction techniques of citrus polyphenols, as well as integrated mechanisms for its anti-inflammation, alleviating metabolic syndrome, and regulating gut homeostasis, which is more capitalized upon using nano-delivery systems as discussed in that review to maximize their health and food applications.
  5. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
  6. Gu H, Huang X, Chen Q, Sun Y, Tan CP
    J Fluoresc, 2020 May;30(3):687-694.
    PMID: 32378115 DOI: 10.1007/s10895-020-02546-7
    The influences of metal atoms on optimized geometry structures, relative energies, frontline molecular orbitals, and binding energies of metalloporphyrin-based fluorescent array sensor were systematically investigated by density functional theory (DFT) at B3LYP/LAN2DZ level. DFT calculated results reveal that the selected metal atoms in the center of the metalloporphyrin plane provide difference performances of metalloporphyrin-based fluorescent array sensor for the rapid determination of trimethylamine. The calculated binding energies have displayed in the following order at the most stable states: zinc porphyrin (ZnP) 
  7. Fu X, Du B, Meng Y, Li Y, Zhu X, Ou Z, et al.
    PMID: 36883483 DOI: 10.1039/d2em00480a
    Rhinitis is one of the most prevalent chronic diseases globally. Microbiome exposure affects the occurrence of rhinitis. However, previous studies did not differentiate allergic rhinitis (AR) and non-allergic rhinitis (NAR) in the microbial association analysis. In this study, we investigate 347 students in 8 junior high schools, Terengganu, Malaysia, who were categorized as healthy (70.9%), AR (13.8%) and NAR (15.3%) based on a self-administered questionnaire and skin prick tests of pollen, pet, mould and house dust mite allergens. Classroom microbial and metabolite exposure in vacuumed dust was characterized by PacBio long-read amplicon sequencing, quantitative PCR and LC-MS-based untargeted metabolomics. Our findings indicate a similar microbial association pattern between AR and NAR. The richness in Gammaproteobacteria was negatively associated with AR and NAR symptoms, whereas total fungal richness was positively associated with AR and NAR symptoms (p < 0.05). Brasilonema bromeliae and Aeromonas enteropelogenes were negatively associated with AR and NAR, and Deinococcus was positively associated with AR and NAR (p < 0.01). Pipecolic acid was protectively associated with AR and NAR symptoms (OR = 0.06 and 0.13, p = 0.009 and 0.045). A neural network analysis showed that B. bromeliae was co-occurring with pipecolic acid, suggesting that the protective role of this species may be mediated by releasing pipecolic acid. Indoor relative humidity and the weight of vacuum dust were associated with AR and NAR, respectively (p < 0.05), but the health effects were mediated by two protective bacterial species, Aliinostoc morphoplasticum and Ilumatobacter fluminis. Overall, our study reported a similar microbial association pattern between AR and NAR and also revealed the complex interactions between microbial species, environmental characteristics, and rhinitis symptoms.
  8. Rabbolini DJ, Morel-Kopp MC, Chen Q, Gabrielli S, Dunlop LC, Chew LP, et al.
    J Thromb Haemost, 2017 Nov;15(11):2245-2258.
    PMID: 28880435 DOI: 10.1111/jth.13843
    Essentials The phenotypes of different growth factor-independent 1B (GFI1B) variants are not established. GFI1B variants produce heterogeneous clinical phenotypes dependent on the site of mutation. Mutation of the first non-DNA-binding zinc-finger causes a mild platelet and clinical phenotype. GFI1B regulates the CD34 promoter; platelet CD34 expression is an indicator of GFI1B mutation.

    SUMMARY: Background Mutation of the growth factor-independent 1B (GFI1B) fifth DNA-binding zinc-finger domain causes macrothrombocytopenia and α-granule deficiency leading to clinical bleeding. The phenotypes associated with GFI1B variants disrupting non-DNA-binding zinc-fingers remain uncharacterized. Objectives To determine the functional and phenotypic consequences of GFI1B variants disrupting non-DNA-binding zinc-finger domains. Methods The GFI1B C168F variant and a novel GFI1B c.2520 + 1_2520 + 8delGTGGGCAC splice variant were identified in four unrelated families. Phenotypic features, DNA-binding properties and transcriptional effects were determined and compared with those in individuals with a GFI1B H294 fs mutation of the fifth DNA-binding zinc-finger. Patient-specific induced pluripotent stem cell (iPSC)-derived megakaryocytes were generated to facilitate disease modeling. Results The DNA-binding GFI1B variant C168F, which is predicted to disrupt the first non-DNA-binding zinc-finger domain, is associated with macrothrombocytopenia without α-granule deficiency or bleeding symptoms. A GFI1B splice variant, c.2520 + 1_2520 + 8delGTGGGCAC, which generates a short GFI1B isoform that lacks non-DNA-binding zinc-fingers 1 and 2, is associated with increased platelet CD34 expression only, without quantitative or morphologic platelet abnormalities. GFI1B represses the CD34 promoter, and this repression is attenuated by different GFI1B zinc-finger mutations, suggesting that deregulation of CD34 expression occurs at a direct transcriptional level. Patient-specific iPSC-derived megakaryocytes phenocopy these observations. Conclusions Disruption of GFI1B non-DNA-binding zinc-finger 1 is associated with mild to moderate thrombocytopenia without α-granule deficiency or bleeding symptomatology, indicating that the site of GFI1B mutation has important phenotypic implications. Platelet CD34 expression appears to be a common feature of perturbed GFI1B function, and may have diagnostic utility.

  9. Hartman CA, Larsson H, Vos M, Bellato A, Libutzki B, Solberg BS, et al.
    Neurosci Biobehav Rev, 2023 Aug;151:105209.
    PMID: 37149075 DOI: 10.1016/j.neubiorev.2023.105209
    Knowledge on psychiatric comorbidity in adult ADHD is essential for prevention, detection, and treatment of these conditions. This review (1) focuses on large studies (n > 10,000; surveys, claims data, population registries) to identify (a) overall, (b) sex- and (c) age-specific patterns of comorbidity of anxiety disorders (ADs), major depressive disorder (MDD), bipolar disorder (BD) and substance use disorders (SUDs) in adults with ADHD relative to adults without ADHD; and (2) describes methodological challenges relating to establishing comorbidity in ADHD in adults as well as priorities for future research. Meta-analyses (ADHD: n = 550,748; no ADHD n = 14,546,814) yielded pooled odds ratios of 5.0(CI:3.29-7.46) for ADs, 4.5(CI:2.44-8.34) for MDD, 8.7(CI:5.47-13.89) for BD and 4.6(CI:2.72-7.80) for SUDs, indicating strong differences in adults with compared to adults without ADHD. Moderation by sex was not found: high comorbidity held for both men and women with sex-specific patterns as in the general population: higher prevalences of ADs, MDD and BD in women and a higher prevalence of SUDs in men. Insufficient data on different phases of the adult lifespan prevented conclusions on developmental changes in comorbidity. We discuss methodological challenges, knowledge gaps, and future research priorities.
  10. Aji G, Huang Y, Ng ML, Wang W, Lan T, Li M, et al.
    Proc Natl Acad Sci U S A, 2020 09 29;117(39):24434-24442.
    PMID: 32917816 DOI: 10.1073/pnas.2007856117
    Sphingolipid dysregulation is often associated with insulin resistance, while the enzymes controlling sphingolipid metabolism are emerging as therapeutic targets for improving insulin sensitivity. We report herein that sphingosine kinase 2 (SphK2), a key enzyme in sphingolipid catabolism, plays a critical role in the regulation of hepatic insulin signaling and glucose homeostasis both in vitro and in vivo. Hepatocyte-specific Sphk2 knockout mice exhibit pronounced insulin resistance and glucose intolerance. Likewise, SphK2-deficient hepatocytes are resistant to insulin-induced activation of the phosphoinositide 3-kinase (PI3K)-Akt-FoxO1 pathway and elevated hepatic glucose production. Mechanistically, SphK2 deficiency leads to the accumulation of sphingosine that, in turn, suppresses hepatic insulin signaling by inhibiting PI3K activation in hepatocytes. Either reexpressing functional SphK2 or pharmacologically inhibiting sphingosine production restores insulin sensitivity in SphK2-deficient hepatocytes. In conclusion, the current study provides both experimental findings and mechanistic data showing that SphK2 and sphingosine in the liver are critical regulators of insulin sensitivity and glucose homeostasis.
  11. Xiong S, Zuo L, Chen Q, Zeliang Z, Nor Akmal Khalid M
    JMIR Serious Games, 2024 Feb 26;12:e45546.
    PMID: 38407954 DOI: 10.2196/45546
    BACKGROUND: Health rumors arbitrarily spread in mainstream social media on the internet. Health rumors emerged in China during the outbreak of COVID-19 in early 2020. Many midelders/elders (age over 40 years) who lived in Wuhan believed these rumors.

    OBJECTIVE: This study focused on designing a serious game as an experimental program to prevent and control health rumors. The focus of the study was explicitly on the context of the social networking service for midelders/elders.

    METHODS: This research involved 2 major parts: adopting the Transmission Control Protocol model for games and then, based on the model, designing a game named "Fight With Virus" as an experimental platform and developing a cognitive questionnaire with a 5-point Likert scale. The relevant variables for this experimental study were defined, and 10 hypotheses were proposed and tested with an empirical study. In total, 200 participants were selected for the experiments. By collecting relevant data in the experiments, we conducted statistical observations and comparative analysis to test whether the experimental hypotheses could be proved.

    RESULTS: We noted that compared to traditional media, serious games are more capable of inspiring interest in research participants toward their understanding of the knowledge and learning of health commonsense. In judging and recognizing the COVID-19 health rumor, the test group that used game education had a stronger ability regarding identification of the rumor and a higher accuracy rate of identification. Results showed that the more educated midelders/elders are, the more effective they are at using serious games.

    CONCLUSIONS: Compared to traditional media, serious games can effectively improve midelders'/elders' cognitive abilities while they face a health rumor. The gameplay effect is related to the individual's age and educational background, while income and gender have no impact.

  12. Chen Q, Narayanan K
    Methods Mol Biol, 2015;1227:27-54.
    PMID: 25239740 DOI: 10.1007/978-1-4939-1652-8_2
    Recombineering is a powerful genetic engineering technique based on homologous recombination that can be used to accurately modify DNA independent of its sequence or size. One novel application of recombineering is the assembly of linear BACs in E. coli that can replicate autonomously as linear plasmids. A circular BAC is inserted with a short telomeric sequence from phage N15, which is subsequently cut and rejoined by the phage protelomerase enzyme to generate a linear BAC with terminal hairpin telomeres. Telomere-capped linear BACs are protected against exonuclease attack both in vitro and in vivo in E. coli cells and can replicate stably. Here we describe step-by-step protocols to linearize any BAC clone by recombineering, including inserting and screening for presence of the N15 telomeric sequence, linearizing BACs in vivo in E. coli, extracting linear BACs, and verifying the presence of hairpin telomere structures. Linear BACs may be useful for functional expression of genomic loci in cells, maintenance of linear viral genomes in their natural conformation, and for constructing innovative artificial chromosome structures for applications in mammalian and plant cells.
  13. Chen Q, Lee CW, Sim EU, Narayanan K
    Hum Gene Ther Methods, 2014 Feb;25(1):40-7.
    PMID: 24134118 DOI: 10.1089/hgtb.2012.188
    Direct protein delivery into the cytosol of mammalian cells by invasive Escherichia coli (E. coli) bacterial vector will bypass the need to achieve nuclear entry and transcription of DNA, a major hurdle that is known to seriously limit gene transfer. The bacterial vector is induced to express the protein during its growth phase, before presentation for entry into mammalian cells and release of its content into the cellular environment. For this class of vector, crossing the plasma membrane becomes the primary step that determines the success of protein delivery. Yet, how the mechanics of protein expression within the vector affect its entry into the host is poorly understood. We found the vector's effectiveness to enter HeLa cells diminished together with its viability when phage N15 protelomerase (TelN) expression was induced continuously in the invasive E. coli despite producing an abundant amount of functional protein. By comparison, shorter induction, even as little as 3 hr, produced sufficient amounts of functional TelN and showed more effective invasion of HeLa cells, comparable to that of uninduced invasive E. coli. These results demonstrate that brief induction of protein expression during vector growth is essential for optimal entry into mammalian cells, an important step for achieving bacteria-mediated protein delivery.
  14. Chen Q, Narayanan K
    Anal Biochem, 2011 Jul 1;414(1):169-71.
    PMID: 21396906 DOI: 10.1016/j.ab.2011.03.006
    The phage N15 protelomerase enzyme (TelN) is essential for the replication of its genome by resolution of its telRL domain, located within a telomerase occupancy site (tos), into hairpin telomeres. Isolation of TelN for in vitro processing of tos, however, is a highly complex process, requiring multiple purification steps. In this study a simplified protocol for crude total protein extraction is described that retains the tos-cleaving activity of TelN for at least 4 weeks, greatly simplifying in vitro testing of its activity. This protocol may be extended for functional analysis of other phage and bacterial proteins, particularly DNA-processing enzymes.
  15. Liew PS, Chen Q, Ng AWR, Chew YC, Ravin NV, Sim EUH, et al.
    Anal Biochem, 2019 10 15;583:113361.
    PMID: 31306622 DOI: 10.1016/j.ab.2019.113361
    Phage N15 protelomerase (TelN) cleaves double-stranded circular DNA containing a telomerase-occupancy-site (tos) and rejoins the resulting linear-ends to form closed-hairpin-telomeres in Escherichia coli (E. coli). Continued TelN expression is essential to support resolution of the linear structure. In mammalian cells, no enzyme with TelN-like activities has been found. In this work, we show that phage TelN, expressed transiently and stably in human and mouse cells, recapitulates its native activities in these exogenous environments. We found TelN to accurately resolve tos-DNA in vitro and in vivo within human and mouse cells into linear DNA-containing terminal telomeres that are resistant to RecBCD degradation, a hallmark of protelomerase processing. In stable cells, TelN activity was detectable for at least 60 days, which suggests the possibility of limited silencing of its expression. Correspondingly, linear plasmid containing a 100 kb human β-globin gene expressed for at least 120 h in non-β-globin-expressing mouse cells with TelN presence. Our results demonstrate TelN is able to cut and heal DNA as hairpin-telomeres within mammalian cells, providing a tool for creating novel structures by DNA resolution in these hosts. The TelN protelomerase may be useful for exploring novel technologies for genome interrogation and chromosome engineering.
  16. Wong YC, Ng AWR, Chen Q, Liew PS, Lee CW, Sim EUH, et al.
    ACS Synth Biol, 2023 Apr 21;12(4):909-921.
    PMID: 37026178 DOI: 10.1021/acssynbio.2c00580
    Bacteriophage N15 is the first virus known to deliver linear prophage into Escherichia coli. During its lysogenic cycle, N15 protelomerase (TelN) resolves its telomerase occupancy site (tos) into hairpin telomeres. This protects the N15 prophage from bacterial exonuclease degradation, enabling it to stably replicate as a linear plasmid in E. coli. Interestingly, purely proteinaceous TelN can retain phage DNA linearization and hairpin formation without involving host- or phage-derived intermediates or cofactors in the heterologous environment. This unique feature has led to the advent of synthetic linear DNA vector systems derived from the TelN-tos module for the genetic engineering of bacterial and mammalian cells. This review will focus on the development and advantages of N15-based novel cloning and expression vectors in the bacterial and mammalian environments. To date, N15 is the most widely exploited molecular tool for the development of linear vector systems, especially the production of therapeutically useful miniDNA vectors without a bacterial backbone. Compared to typical circular plasmids, linear N15-based plasmids display remarkable cloning fidelity in propagating unstable repetitive DNA sequences and large genomic fragments. Additionally, TelN-linearized vectors with the relevant origin of replication can replicate extrachromosomally and retain transgenes functionality in bacterial and mammalian cells without compromising host cell viability. Currently, this DNA linearization system has shown robust results in the development of gene delivery vehicles, DNA vaccines and engineering mammalian cells against infectious diseases or cancers, highlighting its multifaceted importance in genetic studies and gene medicine.
  17. Rabbolini DJ, Chun Y, Latimer M, Kunishima S, Fixter K, Valecha B, et al.
    Platelets, 2018 Dec;29(8):793-800.
    PMID: 29090586 DOI: 10.1080/09537104.2017.1356920
    MYH9-related disorders (MYH9-RDs) caused by mutation of the MYH9 gene which encodes non-muscle myosin heavy-chain-IIA (NMMHC-IIA), an important motor protein in hemopoietic cells, are the most commonly encountered cause of inherited macrothrombocytopenia. Despite distinguishing features including an autosomal dominant mode of inheritance, giant platelets on the peripheral blood film accompanied by leucocytes with cytoplasmic inclusion bodies (döhle-like bodies), these disorders remain generally under-recognized and often misdiagnosed as immune thrombocytopenia (ITP). This may result in inappropriate treatment with corticosteroids, immunosupressants and in some cases, splenectomy. We explored the efficacy of next generation sequencing (NGS) with a candidate gene panel to establish the aetiology of thrombocytopenia for individuals who had been referred to our center from hematologists in the Australasian region in whom the cause of thrombocytopenia was suspected to be secondary to an inherited condition but which remained uncharacterized despite phenotypic investigations. Pathogenic MYH9 variants were detected in 15 (15/121, 12.4%) individuals and the pathogenecity of a novel variant of uncertain significance was confirmed in a further two related individuals following immunofluorescence (IF) staining performed in our laboratory. Concerningly, only one (1/17) individual diagnosed with MYH9-RD had been referred with this as a presumptive diagnosis, in all other cases (16/17, 94.1%), a diagnosis was not suspected by referring clinicians, indicating a lack of awareness or a failing of our diagnostic approach to these conditions. We examined the mean platelet diameter (MPD) measurements as a means to better identify and quantify platelet size. MPDs in cases with MYH9-RDs were significantly larger than controls (p < 0.001) and in 91% were greater than a previously suggested threshold for platelets in cases of ITP. In addition, we undertook IF staining in a proportion of cases and confirm that this test and/or NGS are satisfactory diagnostic tests. We propose that fewer cases of MYH9-RDs would be missed if diagnostic algorithms prioritized IF and/or NGS in cases of thrombocytopenia associated with giant platelets, even if döhle-like bodies are not appreciated on the peripheral blood film. Finally, our report describes the long-term use of a thrombopoietin agonist in a case of MYH9-RD that had previously been diagnosed as ITP, and demonstrates that treatment with these agents may be possible, and is well tolerated, in this group of patients.
  18. Yang YF, Mattamel PB, Joseph T, Huang J, Chen Q, Akinwunmi BO, et al.
    Nutrients, 2021 Apr 21;13(5).
    PMID: 33918992 DOI: 10.3390/nu13051388
    BACKGROUND: The role of low-carbohydrate ketogenic diet (LCKD) as an adjuvant therapy in antitumor treatment is not well established. This systematic review and meta-analysis of randomized controlled trials (RCTs) was conducted to investigate the efficacy of LCKD as an adjuvant therapy in antitumor treatment compared to non-ketogenic diet in terms of lipid profile, body weight, fasting glucose level, insulin, and adverse effects; Methods: In this study, databases such as PubMed, Web of Science, Scopus, CINAHL, and Cochrane trials were searched. Only RCTs that involved cancer participants that were assigned to dietary interventions including a LCKD group and a control group (any non-ketogenic dietary intervention) were selected. Three reviewers independently extracted the data, and the meta-analysis was performed using a fixed effects model or random effects model depending on the I2 value or p-value; Results: A total of six articles met the inclusion/exclusion criteria. In the overall analysis, the post-intervention results = standard mean difference, SMD (95% CI) showed total cholesterol (TC) level = 0.25 (-0.17, 0.67), HDL-cholesterol = -0.07 (-0.50, 0.35), LDL-cholesterol = 0.21 (-0.21, 0.63), triglyceride (TG) = 0.09 (-0.33, 0.51), body weight (BW) = -0.34 (-1.33, 0.65), fasting blood glucose (FBG) = -0.40 (-1.23, 0.42) and insulin = 0.11 (-1.33, 1.55). There were three outcomes showing significant results in those in LCKD group: the tumor marker PSA, p = 0.03, the achievement of ketosis p = 0.010, and the level of satisfaction, p = 0.005; Conclusions: There was inadequate evidence to support the beneficial effects of LCKDs on antitumor therapy. More trials comparing LCKD and non-KD with a larger sample size are necessary to give a more conclusive result.
  19. He MQ, Shen JY, Petrović AP, He QL, Liu HC, Zheng Y, et al.
    Sci Rep, 2016 09 02;6:32508.
    PMID: 27587000 DOI: 10.1038/srep32508
    In the interfacial superconductor Bi2Te3/Fe1+yTe, two dimensional superconductivity occurs in direct vicinity to the surface state of a topological insulator. If this state were to become involved in superconductivity, under certain conditions a topological superconducting state could be formed, which is of high interest due to the possibility of creating Majorana fermionic states. We report directional point-contact spectroscopy data on the novel Bi2Te3/Fe1+yTe interfacial superconductor for a Bi2Te3 thickness of 9 quintuple layers, bonded by van der Waals epitaxy to a Fe1+yTe film at an atomically sharp interface. Our data show highly unconventional superconductivity, which appears as complex as in the cuprate high temperature superconductors. A very large superconducting twin-gap structure is replaced by a pseudogap above ~12 K which persists up to 40 K. While the larger gap shows unconventional order parameter symmetry and is attributed to a thin FeTe layer in proximity to the interface, the smaller gap is associated with superconductivity induced via the proximity effect in the topological insulator Bi2Te3.
  20. Dong L, Li Y, Chen Q, Liu Y, Qiao Z, Sang S, et al.
    Food Chem, 2023 Aug 15;417:135861.
    PMID: 36906946 DOI: 10.1016/j.foodchem.2023.135861
    Advanced glycosylation end products (AGEs) are a series of complex compounds which generate in the advanced phase of Maillard reaction, which can pose a non-negligible risk to human health. This article systematically encompasses AGEs in milk and dairy products under different processing conditions, influencing factors, inhibition mechanism and levels among the different categories of dairy products. In particular, it describes the effects of various sterilization techniques on the Maillard reaction. Different processing techniques have a significant effect on AGEs content. In addition, it clearly articulates the determination methods of AGEs and even discusses its immunometabolism via gut microbiota. It is observed that the metabolism of AGEs can affect the composition of the gut microbiota, which further has an impact on intestinal function and the gut-brain axis. This research also provides a suggestion for AGEs mitigation strategies, which are beneficial to optimize the dairy production, especially innovative processing technology application.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links