Displaying publications 1 - 20 of 67 in total

Abstract:
Sort:
  1. Zuraini NZA, Sekar M, Wu YS, Gan SH, Bonam SR, Mat Rani NNI, et al.
    Vasc Health Risk Manag, 2021;17:739-769.
    PMID: 34858028 DOI: 10.2147/VHRM.S328096
    Cardiovascular diseases (CVDs) are one of the leading causes of morbidity and mortality in both developed and developing countries, affecting millions of individuals each year. Despite the fact that successful therapeutic drugs for the management and treatment of CVDs are available on the market, nutritional fruits appear to offer the greatest benefits to the heart and have been proved to alleviate CVDs. Experimental studies have also demonstrated that nutritional fruits have potential protective effects against CVDs. The aim of the review was to provide a comprehensive summary of scientific evidence on the effect of 10 of the most commonly available nutritional fruits reported against CVDs and describe the associated mechanisms of action. Relevant literatures were searched and collected from several scientific databases including PubMed, ScienceDirect, Google Scholar and Scopus. In the context of CVDs, 10 commonly consumed nutritious fruits including apple, avocado, grapes, mango, orange, kiwi, pomegranate, papaya, pineapple, and watermelon were analysed and addressed. The cardioprotective mechanisms of the 10 nutritional fruits were also compiled and highlighted. Overall, the present review found that the nutritious fruits and their constituents have significant benefits for the management and treatment of CVDs such as myocardial infarction, hypertension, peripheral artery disease, coronary artery disease, cardiomyopathies, dyslipidemias, ischemic stroke, aortic aneurysm, atherosclerosis, cardiac hypertrophy and heart failure, diabetic cardiovascular complications, drug-induced cardiotoxicity and cardiomyopathy. Among the 10 nutritional fruits, pomegranate and grapes have been well explored, and the mechanisms of action are well documented against CVDs. All of the nutritional fruits mentioned are edible and readily accessible on the market. Consuming these fruits, which may contain varying amounts of active constituents depending on the food source and season, the development of nutritious fruits-based health supplements would be more realistic for consistent CVD protection.
  2. Subramaniyan V, Chakravarthi S, Jegasothy R, Seng WY, Fuloria NK, Fuloria S, et al.
    Toxicol Rep, 2021;8:376-385.
    PMID: 33680863 DOI: 10.1016/j.toxrep.2021.02.010
    One of the global burdens of health care is an alcohol-associated liver disease (ALD) and liver-related death which is caused due to acute or chronic consumption of alcohol. Chronic consumption of alcohol damage the normal defense mechanism of the liver and likely to disturb the gut barrier system, mucosal immune cells, which leads to decreased nutrient absorption. Therapy of ALD depends upon the spectrum of liver injury that causes fatty liver, hepatitis, and cirrhosis. The foundation of therapy starts with abstinence from alcohol. Corticosteroids are used for the treatment of ALD but due to poor acceptance, continuing mortality, and identification of tumor necrosis factor-alpha as an integral component in pathogenesis, recent studies focus on pentoxifylline and, antitumor necrosis factor antibody to neutralize cytokines in the therapy of severe alcoholic hepatitis. Antioxidants also play a significant role in the treatment but till today there is no universally accepted therapy available for any stage of ALD. The treatment aspects need to restore the gut functions and require nutrient-based treatments to regulate the functions of the gut system and prevent liver injury. The vital action of saturated fatty acids greatly controls the gut barrier. Overall, this review mainly focuses on the mechanism of alcohol-induced metabolic dysfunction, contribution to liver pathogenesis, the effect of pregnancy, and targeted therapy of ALD.
  3. Reshma A, Tamilanban T, Chitra V, Subramaniyan V, Gupta G, Fuloria NK, et al.
    Sci Rep, 2023 Oct 27;13(1):18449.
    PMID: 37891223 DOI: 10.1038/s41598-023-44462-3
    Obesity is a complex disease caused by various factors, and synthetic drugs used to treat it can have side effects. Natural compounds, such as olivetol, could be a promising alternative. Olivetol is a substance found in certain lichen species and has anti-inflammatory and anti-cancer properties. In this study, researchers conducted in-silico molecular docking studies and found that olivetol had significant binding affinity with receptors involved in obesity. They also investigated the effects of olivetol on a diet-induced obese zebrafish model and found that high doses of olivetol reduced excessive fat accumulation and triglyceride and lipid accumulation. The low dose of olivetol showed a significant reduction in liver enzymes' levels. However, the high dose of olivetol resulted in a significant increase in HMG-CoA levels. These results suggest that olivetol may be a promising anti-obesity agent for the treatment of hyperlipidemia-related disorders, but further research is necessary to understand its full effects on the body.
  4. Yap KM, Sekar M, Wu YS, Gan SH, Rani NNIM, Seow LJ, et al.
    Saudi J Biol Sci, 2021 Dec;28(12):6730-6747.
    PMID: 34866972 DOI: 10.1016/j.sjbs.2021.07.046
    Breast cancer (BC) has high incidence and mortality rates, making it a major global health issue. BC treatment has been challenging due to the presence of drug resistance and the limited availability of therapeutic options for triple-negative and metastatic BC, thereby urging the exploration of more effective anti-cancer agents. Hesperidin and its aglycone hesperetin, two flavonoids from citrus species, have been extensively evaluated for their anti-cancer potentials. In this review, available literatures on the chemotherapeutic and chemosensitising activities of hesperidin and hesperetin in preclinical BC models are reported. The safety and bioavailability of hesperidin and hesperetin as well as the strategies to enhance their bioavailability are also discussed. Overall, hesperidin and hesperetin can inhibit cell proliferation, migration and BC stem cells as well as induce apoptosis and cell cycle arrest in vitro. They can also inhibit tumour growth, metastasis and neoplastic changes in tissue architecture in vivo. Moreover, the co-administration of hesperidin or hesperetin with doxorubicin, letrozole or tamoxifen can enhance the efficacies of these clinically available agents. These chemotherapeutic and chemosensitising activities of hesperidin and hesperetin have been linked to several mechanisms, including the modulation of signalling pathways, glucose uptake, enzymes, miRNA expression, oxidative status, cell cycle regulatory proteins, tumour suppressor p53, plasma and liver lipid profiles as well as DNA repair mechanisms. However, poor water solubility, extensive phase II metabolism and apical efflux have posed limitations to the bioavailability of hesperidin and hesperetin. Various strategies for bioavailability enhancement have been studied, including the utilisation of nano-based drug delivery systems and the co-administration of hesperetin with other flavonoids. In particular, nanoformulated hesperidin and hesperetin possess greater chemotherapeutic and chemosensitising activities than free compounds. Despite promising preclinical results, further safety and efficacy evaluation of hesperidin and hesperetin as well as their nanoformulations in clinical trials is required to ascertain their potentials to be developed as clinically useful agents for BC treatment.
  5. Malviya R, Jha S, Fuloria NK, Subramaniyan V, Chakravarthi S, Sathasivam K, et al.
    Polymers (Basel), 2021 Feb 18;13(4).
    PMID: 33670569 DOI: 10.3390/polym13040610
    The rheological properties of tamarind seed polymer are characterized for its possible commercialization in the food and pharmaceutical industry. Seed polymer was extracted using water as a solvent and ethyl alcohol as a precipitating agent. The temperature's effect on the rheological behavior of the polymeric solution was studied. In addition to this, the temperature coefficient, viscosity, surface tension, activation energy, Gibbs free energy, Reynolds number, and entropy of fusion were calculated by using the Arrhenius, Gibbs-Helmholtz, Frenkel-Eyring, and Eotvos equations, respectively. The activation energy of the gum was found to be 20.46 ± 1.06 kJ/mol. Changes in entropy and enthalpy were found to be 23.66 ± 0.97 and -0.10 ± 0.01 kJ/mol, respectively. The calculated amount of entropy of fusion was found to be 0.88 kJ/mol. A considerable decrease in apparent viscosity and surface tension was produced when the temperature was raised. The present study concludes that the tamarind seed polymer solution is less sensitive to temperature change in comparison to Albzia lebbac gum, Ficus glumosa gum and A. marcocarpa gum. This study also concludes that the attainment of the transition state of viscous flow for tamarind seed gum is accompanied by bond breaking. The excellent physicochemical properties of tamarind seed polymers make them promising excipients for future drug formulation and make their application in the food and cosmetics industry possible.
  6. Malviya R, Tyagi A, Fuloria S, Subramaniyan V, Sathasivam K, Sundram S, et al.
    Polymers (Basel), 2021 May 10;13(9).
    PMID: 34068768 DOI: 10.3390/polym13091531
    Transdermal drug delivery is used to deliver a drug by eliminating the first-pass metabolism, which increases the bioavailability of the drug. The present study aims to formulate the chitosan-tamarind seed polysaccharide composite films and evaluate for the delivery of protein/peptide molecules. Nine formulations were prepared and evaluated by using different parameters, such as physical appearance, folding endurance, thickness of film, surface pH, weight variation, drug content, surface morphology, percentage moisture intake and uptake, drug release kinetics, and drug permeability. The film weight variance was observed between 0.34 ± 0.002 to 0.47 ± 0.003 g. The drug level of the prepared films was found to be between 96 ± 1.21 and 98 ± 1.33μg. Their intake of moisture ranged between 2.83 ± 0.002 and 3.76 ± 0.001 (%). The moisture absorption of the films ranged from 5.33 ± 0.22 to 10.02 ± 0.61 (%). SEM images revealed a smooth film surface, while minor cracks were found in the film after permeation tests. During the first 4 days, drug release was between 13.75 ± 1.64% and 22.54 ± 1.34% and from day 5 to day 6, it was between 72.67 ± 2.13% and 78.33 ± 3.13%. Drug permeation during the first 4 days was 15.78 ± 1.23 %. Drug permeation (%) during the first 4 days was between 15.78 ± 1.23 and 22.49 ± 1.29 and from day 5 to day 6, it was between 71.49 ± 3.21 and 77.93 ± 3.20.
  7. Sathasivam KV, Haris MRHM, Fuloria S, Fuloria NK, Malviya R, Subramaniyan V
    Polymers (Basel), 2021 Jun 11;13(12).
    PMID: 34208069 DOI: 10.3390/polym13121943
    Natural fibers have proven to be excellent reinforcing agents in composite materials. However, a critical disadvantage of natural fibers is their hydrophilic nature. In this study, banana trunk fibers were mechanically damaged using a high-speed blender, and the resulting fibers (MDBTF) were treated with (i) stearic acid (SAMDBTF) and (ii) calcium carbonate coated with 5% (wt/wt) stearic acid (SACCMDBTF). The moisture sorption, oil sorption and thermal properties of the fibers were determined. The morphology, roughness and the functional groups present were also investigated. Study data of the present study indicate that SACCMDBTF exhibited a faster oil sorption capacity than SAMDBTF. Fast uptake of the oil occurred during the first 5 min, whereby the quantity of oil sorbed in SAMDBTF and SACCMDBTF was 5.5 and 15.0 g oil g-1 fiber, respectively. The results of a used engine oil uptake study revealed that SAMDBTF and SACCMDBTF sorbed 9.5 and 18.3 g/g-1 fiber, respectively, at equilibrium. The obtained results suggest that the mechanically damaged process improved the thermal stability of the fibers. This work reveals that the inclusion of stearic-acid-coated calcium carbonate into the interstices of MDBTF yields is environmentally safe for green hydrophobic composites. SACCMDBTF are used as efficient adsorbents for the removal of spilled oil on aqueous media.
  8. Malviya R, Sundram S, Fuloria S, Subramaniyan V, Sathasivam KV, Azad AK, et al.
    Polymers (Basel), 2021 Sep 07;13(18).
    PMID: 34577925 DOI: 10.3390/polym13183023
    Polymers from natural sources are widely used as excipients in the formulation of pharmaceutical dosage forms. The objective of this study was to extract and further characterize the tamarind gum polysaccharide (TGP) obtained from Tamarindus indica as an excipient for biomedical applications. Double distilled water was used as a solvent for the extraction of gum while Ethyl alcohol was used as an antisolvent for the precipitation. The results of the Hausner ratio, Carr's index and angle of repose were found to be 0.94, 6.25, and 0.14, respectively, which revealed that the powder is free-flowing with good flowability. The gum was investigated for purity by carrying out chemical tests for different phytochemical constituents and only carbohydrates were found to be present. The swelling index was found to be 87 ± 1%, which shows that TGP has good water intake capacity. The pH of the 1% gum solution was found to be neutral, approximately 6.70 ± 0.01. The ash values such as total ash, sulphated ash, acid insoluble ash, and water-soluble ash were found to be 14.00 ± 1.00%, 13.00 ± 0.05%, 14.04 ± 0.57% and 7.29 ± 0.06%, respectively. The IR spectra confirmed the presence of alcohol, amines, ketones, anhydrides groups. The contact angle was <90°, indicating favorable wetting and good spreading of liquid over the surface The scanning electron micrograph (SEM) revealed that the particle is spherical in shape and irregular. DSC analysis shows a sharp exothermic peak at 350 °C that shows its crystalline nature. The results of the evaluated properties showed that TGP has acceptable properties and can be used as a excipient to formulate dosage forms for biomedical applications.
  9. Khan TA, Azad AK, Fuloria S, Nawaz A, Subramaniyan V, Akhlaq M, et al.
    Polymers (Basel), 2021 Sep 29;13(19).
    PMID: 34641162 DOI: 10.3390/polym13193345
    The purpose of the present study was to develop emulsions encapsulated by chitosan on the outer surface of a nano droplet containing 5-fluorouracil (5-FU) as a model drug. The emulsions were characterized in terms of size, pH and viscosity and were evaluated for their physicochemical properties such as drug release and skin permeation in vitro. The emulsions containing tween 80 (T80), sodium lauryl sulfate, span 20, and a combination of polyethylene glycol (PEG) and T20 exhibited a release of 88%, 86%, 90% and 92%, respectively. Chitosan-modified emulsions considerably controlled the release of 5-FU compared to a 5-FU solution (p < 0.05). All the formulations enabled transportation of 5-FU through a rat's skin. The combination (T80, PEG) formulation showed a good penetration profile. Different surfactants showed variable degrees of skin drug retention. The ATR-FTIR spectrograms revealed that the emulsions mainly affected the fluidization of lipids and proteins of the stratum corneum (SC) that lead to enhanced drug permeation and retention across the skin. The present study concludes that the emulsions containing a combination of surfactants (Tween) and a co-surfactant (PEG) exhibited the best penetration profile, prevented the premature release of drugs from the nano droplet, enhanced the permeation and the retention of the drug across the skin and had great potential for transdermal drug delivery. Therefore, chitosan-coated 5-FU emulsions represent an excellent possibility to deliver a model drug as a transdermal delivery system.
  10. Bajaj S, Fuloria S, Subramaniyan V, Meenakshi DU, Wakode S, Kaur A, et al.
    Plants (Basel), 2021 May 31;10(6).
    PMID: 34072717 DOI: 10.3390/plants10061109
    Swertia alata C.B Clarke (Gentianaceae) is a well-reported plant in the traditional system of medicine. The present study was intended to isolate the phytoconstituents from the ethanolic extract of the aerial parts of S. alata; and evaluate for in vitro COX-1/COX-2 inhibition activity, in vivo anti-inflammatory and ulcerogenic activity. Phytoisolation involved partitioning of S. alata ethanolic extract into petroleum ether and chloroform soluble fractions using silica gel-based column chromatography. The isolation afforded two phytoisolates, namely oleanolic acid (SA-1) and 3-hydroxylup-12-(13)-ene-17-carboxylic acid (SA-4). Phytoisolates structures were established by melting point, ultraviolet (UV), attenuated total reflection-Fourier-transform infrared (ATR-FTIR), nuclear magnetic resonance (1H-NMR, 13C-NMR and HMBC) and mass spectrometry. Phytoisolates were further evaluated for in vitro cyclooxygenase (COX-1/COX-2) inhibitory activity, in vivo anti-inflammatory and ulcerogenic activity. The study revealed SA-4 (COX-1/COX-2 inhibition activity of 104/61.68 µM with % inhibition of 61.36) to be more effective than SA-1 (COX-1/COX-2 inhibition activity of 128.4/87.25 µM, with % inhibition of 47.72). SA-1 and SA-4, when subjected to ulcerogenic study, exhibited significant gastric tolerance. The current study reports chromatographic isolation and spectrometric characterization of SA-1 and SA-4. The present study concludes that compound SA-4 possess significant anti-inflammatory activity and less irritant property over gastric mucosa with no significant ulcerogenicity in comparison to indomethacin.
  11. Malviya R, Fuloria S, Verma S, Subramaniyan V, Sathasivam KV, Kumarasamy V, et al.
    PeerJ, 2021;9:e12392.
    PMID: 34820175 DOI: 10.7717/peerj.12392
    The present review aims to describe the commercial utilities and future perspectives of nanomedicines. Nanomedicines are intended to increase precision medicine and decrease the adverse effects on the patient. Nanomedicines are produced, engineered, and industrialized at the cellular, chemical, and macromolecular levels. This study describes the various aspects of nanomedicine such as governing outlooks over high use of nanomedicine, regulatory advancements for nanomedicines, standards, and guidelines for nanomedicines as per Therapeutic Goods Administration (TGA). This review also focuses on the patents and clinical trials based on nanoformulation, along with nanomedicines utilization as drug therapy and their market value. The present study concludes that nanomedicines are of high importance in biomedical and pharmaceutical production and offer better therapeutic effects especially in the case of drugs that possess low aqueous solubility. The factual data presented in this study will assist the researchers and health care professionals in understanding the applications of nanomedicine for better diagnosis and effective treatment of a disease.
  12. Hussain MS, Afzal O, Gupta G, Altamimi ASA, Almalki WH, Alzarea SI, et al.
    Pathol Res Pract, 2023 Sep;249:154738.
    PMID: 37595448 DOI: 10.1016/j.prp.2023.154738
    Lung cancer (LC) continues to pose a significant global medical burden, necessitating a comprehensive understanding of its molecular foundations to establish effective treatment strategies. The mitogen-activated protein kinase (MAPK) signaling system has been scientifically associated with LC growth; however, the intricate regulatory mechanisms governing this system remain unknown. Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of diverse cellular activities, including cancer growth. LncRNAs have been implicated in LC, which can function as oncogenes or tumor suppressors, and their dysregulation has been linked to cancer cell death, metastasis, spread, and proliferation. Due to their involvement in critical pathophysiological processes, lncRNAs are gaining attention as potential candidates for anti-cancer treatments. This article aims to elucidate the regulatory role of lncRNAs in MAPK signaling in LC. We provide a comprehensive review of the key components of the MAPK pathway and their relevance in LC, focusing on aberrant signaling processes associated with disease progression. By examining recent research and experimental findings, this article examines the molecular mechanisms through which lncRNAs influence MAPK signaling in lung cancer, ultimately contributing to tumor development.
  13. Kazmi I, Altamimi ASA, Afzal M, Majami AA, Abbasi FA, Almalki WH, et al.
    Pathol Res Pract, 2024 Jan;253:155037.
    PMID: 38160482 DOI: 10.1016/j.prp.2023.155037
    Ulcerative colitis (UC) is a persistent inflammatory condition affecting the colon's mucosal lining, leading to chronic bowel inflammation. Despite extensive research, the precise molecular mechanisms underlying UC pathogenesis remain elusive. NcRNAs form a category of functional RNA molecules devoid of protein-coding capacity. They have recently surfaced as pivotal modulators of gene expression and integral participants in various pathological processes, particularly those related to inflammatory disorders. The diverse classes of ncRNAs, encompassing miRNAs, circRNAs, and lncRNAs, have been implicated in UC. It highlights their involvement in key UC-related processes, such as immune cell activation, epithelial barrier integrity, and the production of pro-inflammatory mediators. ncRNAs have been identified as potential biomarkers for UC diagnosis and monitoring disease progression, offering promising avenues for personalized medicine. This approach may pave the way for novel, more specific treatments with reduced side effects, addressing the current limitations of conventional therapies. A comprehensive understanding of the interplay between ncRNAs and UC will advance our knowledge of the disease, potentially leading to more effective and personalized treatments for patients suffering from this debilitating condition. This review explores the pivotal role of ncRNAs in the context of UC, shedding light on their possible targets for diagnosis, prognosis, and therapeutic interventions.
  14. Kazmi I, Altamimi ASA, Afzal M, Majami AA, AlGhamdi AS, Alkinani KB, et al.
    Pathol Res Pract, 2024 Feb;254:155134.
    PMID: 38277746 DOI: 10.1016/j.prp.2024.155134
    Prostate cancer (PCa) is an important worldwide medical concern, necessitating a greater understanding of the molecular processes driving its development. The Wnt/-catenin signaling cascade is established as a central player in PCa pathogenesis, and recent research emphasizes the critical involvement of non-coding RNAs (ncRNAs) in this scenario. This in-depth study seeks to give a thorough examination of the complex relationship between ncRNAs and the Wnt/β-catenin system in PCa. NcRNAs, such as circular RNAs (circRNAs), long ncRNAs (lncRNAs), and microRNAs (miRNAs), have been recognized as essential regulators that modulate numerous facets of the Wnt/β-catenin network. MiRNAs have been recognized as targeting vital elements of the process, either enhancing or inhibiting signaling, depending on their specific roles and targets. LncRNAs participate in fine-tuning the Wnt/β-catenin network as a result of complicated interplay with both upstream and downstream elements. CircRNAs, despite being a relatively recent addition to the ncRNA family, have been implicated in PCa, influencing the Wnt/β-catenin cascade through diverse mechanisms. This article encompasses recent advances in our comprehension of specific ncRNAs that participate in the Wnt/β-catenin network, their functional roles, and clinical relevance in PCa. We investigate their use as screening and predictive indicators, and targets for treatment. Additionally, we delve into the interplay between Wnt/β-catenin and other signaling networks in PCa and the role of ncRNAs within this complex network. As we unveil the intricate regulatory functions of ncRNAs in the Wnt/β-catenin cascade in PCa, we gain valuable insights into the disease's pathogenesis. The implementation of these discoveries in practical applications holds promise for more precise diagnosis, prognosis, and targeted therapeutic approaches, ultimately enhancing the care of PCa patients. This comprehensive review underscores the evolving landscape of ncRNA research in PCa and the potential for innovative interventions in the battle against this formidable malignancy.
  15. Subramaniyan V, Chakravarthi S, Seng WY, Kayarohanam S, Fuloria NK, Fuloria S
    Pak J Pharm Sci, 2020 Jul;33(4):1739-1745.
    PMID: 33583811
    The outbreak of CoVID-19 infection rapidly increases worldwide. Most of the continents affecting from CoVID-19 and still widening its burden disease (Jones DS, 2020; Lai et al., 2020). Along with its fatality rates, CoVID-19 has caused physiological disturbances in the society and termed as "coronophobia". CoVID-19 with renal failure, severe pneumonia and respiratory syndrome patients have been reported to increase the severity of disease conditions (Sevim et al., 2020). Also, CoVID-19 with cancer patients increase the higher risk of infections. Currently, there is no vaccine or specific treatment against CoVID-19 and drug research centres continuously investigating the potential drug against CoVID-19 (Osama and Amer, 2020). For the past 20 years two major coronavirus epidemics have occurred in public includes SARS-CoV approximately 8000 cases and 800 deaths and MERS-CoV 2,500 cases and 800 deaths and these continuing sporadically (Cascella et al., 2020).
  16. Sharma PK, Fuloria S, Ali M, Singh A, Kushwaha SP, Sharma VK, et al.
    Pak J Pharm Sci, 2021 Jul;34(4):1397-1401.
    PMID: 34799313
    The current research was aimed to isolate newer phyto-metabolites from rhizomes of Alpinia galanga plant. Study involved preparation of Alpinia galanga rhizome methanolic extract, followed by normal phase column chromatography assisted isolation of new phytometabolites (using different combinations of chloroform and methanol), and characterization (by UV, FTIR, 13C-NMR, 1H-NMR, COSY, DEPT and Mass spectrometry). The isolation and characterization experiment offered two phytometabolites: an ester (Ag-1) and tetrahydronapthalene type lactone (Ag-2). Present study concludes and reports the two phytometabolites, benzyl myristate (Ag-1) and 3-Methyl-6α, 8β-diol-7-carboxylic acid tetralin-11, 9β-olide (Ag-2) for the first time in Alpinia galanga rhizome. The study recommends that these phytometabolites Ag-1 and Ag-2 can be utilized as effective analytical biomarkers for identification, purity and quality control of this plant in future.
  17. Kaur I, Behl T, Sundararajan G, Panneerselvam P, Vijayakumar AR, Senthilkumar GP, et al.
    Neurotox Res, 2023 Oct 17.
    PMID: 37847429 DOI: 10.1007/s12640-023-00670-3
    Alzheimer's disease contributes to 60-70% of all dementia cases in the general population. Belonging to the BIN1/amphiphysin/RVS167 (BAR) superfamily, the bridging integrator (BIN1) has been identified to impact two major pathological hallmarks in Alzheimer's disease (AD), i.e., amyloid beta (Aβ) and tau accumulation. Aβ accumulation is found to increase by BIN1 knockdown in cortical neurons in late-onset AD, due to BACE1 accumulation at enlarged early endosomes. Two BIN1 mutants, KR and PL, were identified to exhibit Aβ accumulation. Furthermore, BIN1 deficiency by BIN1-related polymorphisms impairs the interaction with tau, thus elevating tau phosphorylation, altering synapse structure and tau function. Even though the precise role of BIN1 in the neuronal tissue needs further investigation, the authors aim to throw light on the potential of BIN1 and unfold its implications on tau and Aβ pathology, to aid AD researchers across the globe to examine BIN1, as an appropriate target gene for disease management.
  18. Sudhakar K, Fuloria S, Subramaniyan V, Sathasivam KV, Azad AK, Swain SS, et al.
    Nanomaterials (Basel), 2021 Sep 29;11(10).
    PMID: 34685005 DOI: 10.3390/nano11102557
    A selected active pharmaceutical ingredient must be incorporated into a cargo carrier in a particular manner so that it achieves its goal. An amalgamation of active pharmaceutical ingredients (APIs) should be conducted in such a manner that it is simple, professional, and more beneficial. Lipids/polymers that are known to be used in nanocarriers for APIs can be transformed into a vesicular formulation, which offers elegant solutions to many problems. Phospholipids with other ingredients, such as ethanol and water, form suitable vesicular carriers for many drugs, overcoming many problems related to poor bioavailability, poor solubility, etc. Ultraflexible liposomes are novel carriers and new frontiers of drug delivery for transdermal systems. Auxiliary advances in vesicular carrier research have been made, enabling polymer-coated ethanolic liposomes to avoid detection by the body's immune system-specifically, the cells of the reticuloendothelial system. Ultraflexible liposomes act as a cargo system and a nanotherapeutic approach for the transport of therapeutic drugs and bioactive agents. Various applications of liposome derivatives in different diseases are emphasized in this review.
  19. Khattulanuar FS, Sekar M, Fuloria S, Gan SH, Rani NNIM, Ravi S, et al.
    Molecules, 2022 Jan 20;27(3).
    PMID: 35163934 DOI: 10.3390/molecules27030673
    Cardiovascular disorders (CVDs) are the leading risk factor for death worldwide, and research into the processes and treatment regimens has received a lot of attention. Tilianin is a flavonoid glycoside that can be found in a wide range of medicinal plants and is most commonly obtained from Dracocephalum moldavica. Due to its extensive range of biological actions, it has become a well-known molecule in recent years. In particular, numerous studies have shown that tilianin has cardioprotective properties against CVDs. Hence, this review summarises tilianin's preclinical research in CVDs, as well as its mechanism of action and opportunities in future drug development. The physicochemical and drug-likeness properties, as well as the toxicity profile, were also highlighted. Tilianin can be a natural lead molecule in the therapy of CVDs such as coronary heart disease, angina pectoris, hypertension, and myocardial ischemia, according to scientific evidence. Free radical scavenging, inflammation control, mitochondrial function regulation, and related signalling pathways are all thought to play a role in tilianin's cardioprotective actions. Finally, we discuss tilianin-derived compounds, as well as the limitations and opportunities of using tilianin as a lead molecule in drug development for CVDs. Overall, the scientific evidence presented in this review supports that tilianin and its derivatives could be used as a lead molecule in CVD drug development initiatives.
  20. Fuloria S, Yusri MAA, Sekar M, Gan SH, Rani NNIM, Lum PT, et al.
    Molecules, 2022 Jan 01;27(1).
    PMID: 35011497 DOI: 10.3390/molecules27010265
    Genistein is a naturally occurring polyphenolic molecule in the isoflavones group which is well known for its neuroprotection. In this review, we summarize the efficacy of genistein in attenuating the effects of memory impairment (MI) in animals. Scopus, PubMed, and Web of Science databases were used to find the relevant articles and discuss the effects of genistein in the brain, including its pharmacokinetics, bioavailability, behavioral effects, and some of the potential mechanisms of action on memory in several animal models. The results of the preclinical studies highly suggested that genistein is highly effective in enhancing the cognitive performance of the MI animal models, specifically in the memory domain, including spatial, recognition, retention, and reference memories, through its ability to reduce oxidative stress and attenuate neuroinflammation. This review also highlighted challenges and opportunities to improve the drug delivery of genistein for treating MI. Along with that, the possible structural modifications and derivatives of genistein to improve its physicochemical and drug-likeness properties are also discussed. The outcomes of the review proved that genistein can enhance the cognitive performance and ameliorate MI in different preclinical studies, thus indicating its potential as a natural lead for the design and development of a novel neuroprotective drug.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links