Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Abd Aziz M, Hamzaid NA, Hasnan N
    J Vis Exp, 2022 Nov 11.
    PMID: 36440840 DOI: 10.3791/63149
    Execution of Sit-to-Stand (SitTS) in incomplete spinal cord injury (SCI) patients involves motor function in both upper and lower extremities. The use of arm support, in particular, is a significant assistive factor while executing SitTS movement in SCI population. In addition, the application of functional electrical stimulation (FES) onto quadriceps and gluteus maximus muscles is one of the prescribed management for incomplete SCI to improve muscle action for simple lower limb movements. However, the relative contribution of upper and lower extremities during SitTS has not been thoroughly investigated. Two motor incomplete SCI paraplegics performed repetitive SitTS to fatigue exercise challenge. Their performance was investigated as a mixed-method case-control study comparing SitTS with and without the assistance of FES. Three sets of SitTS tests were completed with 5-min resting period allocated in between sets, with mechanomyography (MMG) sensors attached over the rectus femoris muscles bilaterally. The exercise was separated into 2 sessions; Day 1 for voluntary SitTS and Day 2 for FES-assisted SitTS. Questionnaires were conducted after every session to gather the participants' input about their repetitive SitTS experience. The analysis confirmed that a SitTS cycle could be divided into three phases; Phase 1 (Preparation to stand), Phase 2 (Seat-off), and Phase 3 (Initiation of hip extension), which contributed to 23% ± 7%, 16% ± 4% and 61% ± 6% of the SitTS cycle, respectively. The contribution of arms and legs during SitTS movement varied in different participants based on their legs' Medical Research Council (MRC) muscle grade. In particular, the applied arm forces start to increase clearly when the leg forces start to decline during standing. This finding is supported by the significantly reduced MMG signal indicating leg muscle fatigue and their reported feeling of tiredness.
  2. Abu Bakar AR, Lai KW, Hamzaid NA
    Neurosci Lett, 2021 11 20;765:136250.
    PMID: 34536511 DOI: 10.1016/j.neulet.2021.136250
    Hearing loss is a common neurodegenerative disease that can start at any stage of life. Misalignment of the auditory neural impairment may impose challenges in processing incoming auditory stimulus that can be measured using electroencephalography (EEG). The electrophysiological behaviour response emanated from EEG auditory evoked potential (AEP) requires highly trained professionals for analysis and interpretation. Reliable automated methods using techniques of machine learning would assist the auditory assessment process for informed treatment and practice. It is thus highly required to develop models that are more efficient and precise by considering the characteristics of brain signals. This study aims to provide a comprehensive review of several state-of-the-art techniques of machine learning that adopt EEG evoked response for the auditory assessment within the last 13 years. Out of 161 initially screened articles, 11 were retained for synthesis. The outcome of the review presented that the Support Vector Machine (SVM) classifier outperformed with over 80% accuracy metric and was recognized as the best suited model within the field of auditory research. This paper discussed the comprehensive iterative properties of the proposed computed algorithms and the feasible future direction in hearing impaired rehabilitation.
  3. Braz GP, Russold MF, Fornusek C, Hamzaid NA, Smith RM, Davis GM
    Artif Organs, 2015 Oct;39(10):855-62.
    PMID: 26471136 DOI: 10.1111/aor.12619
    This is a case series study with the objective of comparing two motion sensor automated strategies to avert knee buckle during functional electrical stimulation (FES)-standing against a conventional hand-controlled (HC) FES approach. The research was conducted in a clinical exercise laboratory gymnasium at the University of Sydney, Australia. The automated strategies, Aut-A and Aut-B, applied fixed and variable changes of neurostimulation, respectively, in quadriceps amplitude to precisely control knee extension during standing. HC was an "on-demand" increase of stimulation amplitude to maintain stance. Finally, maximal FES amplitude (MA) was used as a control condition, whereby knee buckle was prevented by maximal isometric muscle recruitment. Four AIS-A paraplegics undertook 4 days of testing each, and each assessment day comprised three FES standing trials using the same strategy. Cardiorespiratory responses were recorded, and quadriceps muscle oxygenation was quantified using near-infrared spectroscopy. For all subjects, the longest standing times were observed during Aut-A, followed by Aut-B, and then HC and MA. The standing times of the automated strategies were superior to HC by 9-64%. Apart from a lower heart rates during standing (P = 0.034), the automation of knee extension did not promote different cardiorespiratory responses compared with HC. The standing times during MA were significantly shorter than during the automated or "on-demand" strategies (by 80-250%). In fact, the higher isometric-evoked quadriceps contraction during MA resulted in a greater oxygen demand (P 
  4. Braz GP, Russold MF, Fornusek C, Hamzaid NA, Smith RM, Davis GM
    Med Eng Phys, 2016 11;38(11):1223-1231.
    PMID: 27346492 DOI: 10.1016/j.medengphy.2016.06.007
    This pilot study reports the development of a novel closed-loop (CL) FES-gait control system, which employed a finite-state controller that processed kinematic feedback from four miniaturized motion sensors. This strategy automated the control of knee extension via quadriceps and gluteus stimulation during the stance phase of gait on the supporting leg, and managed the stimulation delivered to the common peroneal nerve (CPN) during swing-phase on the contra-lateral limb. The control system was assessed against a traditional open-loop (OL) system on two sensorimotor 'complete' paraplegic subjects. A biomechanical analysis revealed that the closed-loop control of leg swing was efficient, but without major advantages compared to OL. CL automated the control of knee extension during the stance phase of gait and for this reason was the method of preference by the subjects. For the first time, a feedback control system with a simplified configuration of four miniaturized sensors allowed the addition of instruments to collect the data of multiple physiological and biomechanical variables during FES-evoked gait. In this pilot study of two sensorimotor complete paraplegic individuals, CL ameliorated certain drawbacks of current OL systems - it required less user intervention and accounted for the inter-subject differences in their stimulation requirements.
  5. Dzulkifli MA, Hamzaid NA, Davis GM, Hasnan N
    Front Neurorobot, 2018;12:50.
    PMID: 30147650 DOI: 10.3389/fnbot.2018.00050
    This study sought to design and deploy a torque monitoring system using an artificial neural network (ANN) with mechanomyography (MMG) for situations where muscle torque cannot be independently quantified. The MMG signals from the quadriceps were used to derive knee torque during prolonged functional electrical stimulation (FES)-assisted isometric knee extensions and during standing in spinal cord injured (SCI) individuals. Three individuals with motor-complete SCI performed FES-evoked isometric quadriceps contractions on a Biodex dynamometer at 30° knee angle and at a fixed stimulation current, until the torque had declined to a minimum required for ANN model development. Two ANN models were developed based on different inputs; Root mean square (RMS) MMG and RMS-Zero crossing (ZC) which were derived from MMG. The performance of the ANN was evaluated by comparing model predicted torque against the actual torque derived from the dynamometer. MMG data from 5 other individuals with SCI who performed FES-evoked standing to fatigue-failure were used to validate the RMS and RMS-ZC ANN models. RMS and RMS-ZC of the MMG obtained from the FES standing experiments were then provided as inputs to the developed ANN models to calculate the predicted torque during the FES-evoked standing. The average correlation between the knee extension-predicted torque and the actual torque outputs were 0.87 ± 0.11 for RMS and 0.84 ± 0.13 for RMS-ZC. The average accuracy was 79 ± 14% for RMS and 86 ± 11% for RMS-ZC. The two models revealed significant trends in torque decrease, both suggesting a critical point around 50% torque drop where there were significant changes observed in RMS and RMS-ZC patterns. Based on these findings, both RMS and RMS-ZC ANN models performed similarly well in predicting FES-evoked knee extension torques in this population. However, interference was observed in the RMS-ZC values at a time around knee buckling. The developed ANN models could be used to estimate muscle torque in real-time, thereby providing safer automated FES control of standing in persons with motor-complete SCI.
  6. El-Sayed AM, Hamzaid NA, Abu Osman NA
    Sensors (Basel), 2014;14(12):23724-41.
    PMID: 25513823 DOI: 10.3390/s141223724
    Alternative sensory systems for the development of prosthetic knees are being increasingly highlighted nowadays, due to the rapid advancements in the field of lower limb prosthetics. This study presents the use of piezoelectric bimorphs as in-socket sensors for transfemoral amputees. An Instron machine was used in the calibration procedure and the corresponding output data were further analyzed to determine the static and dynamic characteristics of the piezoelectric bimorph. The piezoelectric bimorph showed appropriate static operating range, repeatability, hysteresis, and frequency response for application in lower prosthesis, with a force range of 0-100 N. To further validate this finding, an experiment was conducted with a single transfemoral amputee subject to measure the stump/socket pressure using the piezoelectric bimorph embedded inside the socket. The results showed that a maximum interface pressure of about 27 kPa occurred at the anterior proximal site compared to the anterior distal and posterior sites, consistent with values published in other studies. This paper highlighted the capacity of piezoelectric bimorphs to perform as in-socket sensors for transfemoral amputees. However, further experiments are recommended to be conducted with different amputees with different socket types.
  7. El-Sayed AM, Hamzaid NA, Abu Osman NA
    ScientificWorldJournal, 2014;2014:297431.
    PMID: 25110727 DOI: 10.1155/2014/297431
    Several studies have presented technological ensembles of active knee systems for transfemoral prosthesis. Other studies have examined the amputees' gait performance while wearing a specific active prosthesis. This paper combined both insights, that is, a technical examination of the components used, with an evaluation of how these improved the gait of respective users. This study aims to offer a quantitative understanding of the potential enhancement derived from strategic integration of core elements in developing an effective device. The study systematically discussed the current technology in active transfemoral prosthesis with respect to its functional walking performance amongst above-knee amputee users, to evaluate the system's efficacy in producing close-to-normal user performance. The performances of its actuator, sensory system, and control technique that are incorporated in each reported system were evaluated separately and numerical comparisons were conducted based on the percentage of amputees' gait deviation from normal gait profile points. The results identified particular components that contributed closest to normal gait parameters. However, the conclusion is limitedly extendable due to the small number of studies. Thus, more clinical validation of the active prosthetic knee technology is needed to better understand the extent of contribution of each component to the most functional development.
  8. El-Sayed AM, Hamzaid NA, Tan KY, Abu Osman NA
    ScientificWorldJournal, 2015;2015:923286.
    PMID: 25945365 DOI: 10.1155/2015/923286
    This paper presents an approach of identifying prosthetic knee movements through pattern recognition of mechanical responses at the internal socket's wall. A quadrilateral double socket was custom made and instrumented with two force sensing resistors (FSR) attached to specific anterior and posterior sites of the socket's wall. A second setup was established by attaching three piezoelectric sensors at the anterior distal, anterior proximal, and posterior sites. Gait cycle and locomotion movements such as stair ascent and sit to stand were adopted to characterize the validity of the technique. FSR and piezoelectric outputs were measured with reference to the knee angle during each phase. Piezoelectric sensors could identify the movement of midswing and terminal swing, pre-full standing, pull-up at gait, sit to stand, and stair ascent. In contrast, FSR could estimate the gait cycle stance and swing phases and identify the pre-full standing at sit to stand. FSR showed less variation during sit to stand and stair ascent to sensitively represent the different movement states. The study highlighted the capacity of using in-socket sensors for knee movement identification. In addition, it validated the efficacy of the system and warrants further investigation with more amputee subjects and different sockets types.
  9. El-Sayed AM, Abo-Ismail A, El-Melegy MT, Hamzaid NA, Osman NA
    Sensors (Basel), 2013 May 07;13(5):5826-40.
    PMID: 23653051 DOI: 10.3390/s130505826
    Piezoelectric bimorphs have been used as a micro-gripper in many applications, but the system might be complex and the response performance might not have been fully characterized. In this study the dynamic characteristics of bending piezoelectric bimorphs actuators were theoretically and experimentally investigated for micro-gripping applications in terms of deflection along the length, transient response, and frequency response with varying driving voltages and driving signals. In addition, the implementation of a parallel micro-gripper using bending piezoelectric bimorphs was presented. Both fingers were actuated separately to perform mini object handling. The bending piezoelectric bimorphs were fixed as cantilevers and individually driven using a high voltage amplifier and the bimorph deflection was measured using a non contact proximity sensor attached at the tip of one finger. The micro-gripper could perform precise micro-manipulation tasks and could handle objects down to 50 µm in size. This eliminates the need for external actuator extension of the microgripper as the grasping action was achieved directly with the piezoelectric bimorph, thus minimizing the weight and the complexity of the micro-gripper.
  10. Hamdan PNF, Hamzaid NA, Abd Razak NA, Hasnan N
    J Sport Health Sci, 2022 Nov;11(6):671-680.
    PMID: 33068748 DOI: 10.1016/j.jshs.2020.10.002
    BACKGROUND: Due to its clinically proven safety and health benefits, functional electrical stimulation (FES) cycling has become a popular exercise modality for individuals with spinal cord injury (SCI). Since its inception in 2013, the Cybathlon championship has been a platform for publicizing the potential of FES cycling in rehabilitation and exercise for individuals with SCI. This study aimed to evaluate the contribution of the Cybathlon championship to the literature on FES cycling for individuals with SCI 3 years pre and post the staging of the Cybathlon championship in 2016.

    METHODS: Web of Science, Scopus, ScienceDirect, IEEE Xplore, and Google Scholar databases were searched for relevant studies published between January 2013 and July 2019. The quality of the included studies was objectively evaluated using the Downs and Black checklist.

    RESULTS: A total of 129 articles on FES cycling were retained for analysis. A total of 51 articles related to Cybathlon were reviewed, and 14 articles were ultimately evaluated for the quality. In 2017, the year following the Cybathlon championship, Web of Science cited 23 published studies on the championship, which was almost 5-fold more than that in 2016 (n = 5). Training was most often reported as a topic of interest in these studies, which mostly (76.7%) highlighted the training parameters of interest to participating teams in their effort to maximize their FES cycling performance during the Cybathlon championship.

    CONCLUSION: The present study indicates that the Cybathlon championship in 2016 contributed to the number of literature published in 2017 on FES cycling for individuals with SCI. This finding may contribute to the lessons that can be learned from participation in the Cybathlon and potentially provide additional insights into research in the field of race-based FES cycling.

  11. Hamdan PNF, Hamzaid NA, Hasnan N, Abd Razak NA, Razman R, Usman J
    Sci Rep, 2024 Mar 18;14(1):6451.
    PMID: 38499594 DOI: 10.1038/s41598-024-56955-w
    Literature has shown that simulated power production during conventional functional electrical stimulation (FES) cycling was improved by 14% by releasing the ankle joint from a fixed ankle setup and with the stimulation of the tibialis anterior and triceps surae. This study aims to investigate the effect of releasing the ankle joint on the pedal power production during FES cycling in persons with spinal cord injury (SCI). Seven persons with motor complete SCI participated in this study. All participants performed 1 min of fixed-ankle and 1 min of free-ankle FES cycling with two stimulation modes. In mode 1 participants performed FES-evoked cycling with the stimulation of quadriceps and hamstring muscles only (QH stimulation), while Mode 2 had stimulation of quadriceps, hamstring, tibialis anterior, and triceps surae muscles (QHT stimulation). The order of each trial was randomized in each participant. Free-ankle FES cycling offered greater ankle plantar- and dorsiflexion movement at specific slices of 20° crank angle intervals compared to fixed-ankle. There were significant differences in the mean and peak normalized pedal power outputs (POs) [F(1,500) = 14.03, p 
  12. Hamzaid NA, Tean LT, Davis GM, Suhaimi A, Hasnan N
    Spinal Cord, 2015 May;53(5):375-9.
    PMID: 25366533 DOI: 10.1038/sc.2014.187
    STUDY DESIGN: Prospective study of two cases.

    OBJECTIVES: To describe the effects of electrical stimulation (ES) therapy in the 4-week management of two sub-acute spinal cord-injured (SCI) individuals (C7 American Spinal Injury Association Impairment Scale (AIS) B and T9 AIS (B)).

    SETTING: University Malaya Medical Centre, Kuala Lumpur, Malaysia.

    METHODS: A diagnostic tilt-table test was conducted to confirm the presence of orthostatic hypotension (OH) based on the current clinical definitions. Following initial assessment, subjects underwent 4 weeks of ES therapy 4 times weekly for 1 h per day. Post-tests tilt table challenge, both with and without ES on their rectus abdominis, quadriceps, hamstrings and gastrocnemius muscles, was conducted at the end of the study (week 5). Subjects' blood pressures (BP) and heart rates (HR) were recorded every minute during pre-test and post-tests. Orthostatic symptoms, as well as the maximum tolerance time that the subjects could withstand head up tilt at 60°, were recorded.

    RESULTS: Subject A improved his orthostatic symptoms, but did not recover from clinically defined OH based on the 20-min duration requirement. With concurrent ES therapy, 60° head up tilt BP was 89/62 mm Hg compared with baseline BP of 115/71 mm Hg. Subject B fully recovered from OH demonstrated by BP of 105/71 mm Hg during the 60° head up tilt compared with baseline BP of 124/77 mm Hg. Both patients demonstrated longer tolerance time during head up tilt with concomitant ES (subject A: pre-test 4 min, post-test without ES 6 min, post-test with ES 12 min; subject B: pre-test 4 min, post-test without ES 28 min, post-test with ES 60 min).

    CONCLUSIONS: Weekly ES therapy had positive effect on OH management in sub-acute SCI individuals.

  13. Hamzaid NA, Manaf H, Azmi NL, Milosevic M, Spaich EG, Yoshida K, et al.
    Artif Organs, 2024 Apr;48(4):421-425.
    PMID: 38339848 DOI: 10.1111/aor.14720
    The annual conference of the International Functional Electrical Stimulation Society (IFESS) was held in conjunction with the 7th RehabWeek Congress, from September 24 to 28, 2023 at the Resorts World Convention Centre on Sentosa Island, in Singapore. The Congress was a joint meeting of the International Consortium on Rehabilitation Technology (ICRT) together with 10 other societies in the field of assistive technology and rehabilitation engineering. The conference features comprehensive blend of technical and clinical context of FES, a sustained value the society has offered over many years. The cross- and inter- disciplinary approach of medicine, engineering, and science practiced in the FES community had enabled vibrant interaction, creation, and development of impactful and novel contributions to the field of FES, translating FES directly into highly relevant and sustainable solutions for the users.
  14. Hasnan N, Mohamad Saadon NS, Hamzaid NA, Teoh MX, Ahmadi S, Davis GM
    Medicine (Baltimore), 2018 Oct;97(43):e12922.
    PMID: 30412097 DOI: 10.1097/MD.0000000000012922
    This study compared muscle oxygenation (StO2) during arm cranking (ACE), functional electrical stimulation-evoked leg cycling (FES-LCE), and hybrid (ACE+FES-LCE) exercise in spinal cord injury individuals. Eight subjects with C7-T12 lesions performed exercises at 3 submaximal intensities. StO2 was measured during rest and exercise at 40%, 60%, and 80% of subjects' oxygen uptake (VO2) peak using near-infrared spectroscopy. StO2 of ACE showed a decrease whereas in ACE+FES-LCE, the arm muscles demonstrated increasing StO2 from rest in all of VO2) peak respectively. StO2 of FES-LCE displayed a decrease at 40% VO2 peak and steady increase for 60% and 80%, whereas ACE+FES-LCE revealed a steady increase from rest at all VO2 peak. ACE+FES-LCE elicited greater StO2 in both limbs which suggested that during this exercise, upper- and lower-limb muscles have higher blood flow and improved oxygenation compared to ACE or FES-LCE performed alone.
  15. Ibitoye MO, Hamzaid NA, Zuniga JM, Hasnan N, Wahab AK
    Sensors (Basel), 2014;14(12):22940-70.
    PMID: 25479326 DOI: 10.3390/s141222940
    The research conducted in the last three decades has collectively demonstrated that the skeletal muscle performance can be alternatively assessed by mechanomyographic signal (MMG) parameters. Indices of muscle performance, not limited to force, power, work, endurance and the related physiological processes underlying muscle activities during contraction have been evaluated in the light of the signal features. As a non-stationary signal that reflects several distinctive patterns of muscle actions, the illustrations obtained from the literature support the reliability of MMG in the analysis of muscles under voluntary and stimulus evoked contractions. An appraisal of the standard practice including the measurement theories of the methods used to extract parameters of the signal is vital to the application of the signal during experimental and clinical practices, especially in areas where electromyograms are contraindicated or have limited application. As we highlight the underpinning technical guidelines and domains where each method is well-suited, the limitations of the methods are also presented to position the state of the art in MMG parameters extraction, thus providing the theoretical framework for improvement on the current practices to widen the opportunity for new insights and discoveries. Since the signal modality has not been widely deployed due partly to the limited information extractable from the signals when compared with other classical techniques used to assess muscle performance, this survey is particularly relevant to the projected future of MMG applications in the realm of musculoskeletal assessments and in the real time detection of muscle activity.
  16. Ibitoye MO, Estigoni EH, Hamzaid NA, Wahab AK, Davis GM
    Sensors (Basel), 2014;14(7):12598-622.
    PMID: 25025551 DOI: 10.3390/s140712598
    The evoked electromyographic signal (eEMG) potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES)-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p < 0.05) between the decline in the peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI) population.
  17. Ibitoye MO, Hamzaid NA, Zuniga JM, Abdul Wahab AK
    Clin Biomech (Bristol, Avon), 2014 Jun;29(6):691-704.
    PMID: 24856875 DOI: 10.1016/j.clinbiomech.2014.04.003
    Previous studies have explored to saturation the efficacy of the conventional signal (such as electromyogram) for muscle function assessment and found its clinical impact limited. Increasing demand for reliable muscle function assessment modalities continues to prompt further investigation into other complementary alternatives. Application of mechanomyographic signal to quantify muscle performance has been proposed due to its inherent mechanical nature and ability to assess muscle function non-invasively while preserving muscular neurophysiologic information. Mechanomyogram is gaining accelerated applications in evaluating the properties of muscle under voluntary and evoked muscle contraction with prospects in clinical practices. As a complementary modality and the mechanical counterpart to electromyogram; mechanomyogram has gained significant acceptance in analysis of isometric and dynamic muscle actions. Substantial studies have also documented the effectiveness of mechanomyographic signal to assess muscle performance but none involved comprehensive appraisal of the state of the art applications with highlights on the future prospect and potential integration into the clinical practices. Motivated by the dearth of such critical review, we assessed the literature to investigate its principle of acquisition, current applications, challenges and future directions. Based on our findings, the importance of rigorous scientific and clinical validation of the signal is highlighted. It is also evident that as a robust complement to electromyogram, mechanomyographic signal may possess unprecedented potentials and further investigation will be enlightening.
  18. Ibitoye MO, Hamzaid NA, Hasnan N, Abdul Wahab AK, Davis GM
    PLoS One, 2016;11(2):e0149024.
    PMID: 26859296 DOI: 10.1371/journal.pone.0149024
    BACKGROUND: Rapid muscle fatigue during functional electrical stimulation (FES)-evoked muscle contractions in individuals with spinal cord injury (SCI) is a significant limitation to attaining health benefits of FES-exercise. Delaying the onset of muscle fatigue is often cited as an important goal linked to FES clinical efficacy. Although the basic concept of fatigue-resistance has a long history, recent advances in biomedical engineering, physiotherapy and clinical exercise science have achieved improved clinical benefits, especially for reducing muscle fatigue during FES-exercise. This review evaluated the methodological quality of strategies underlying muscle fatigue-resistance that have been used to optimize FES therapeutic approaches. The review also sought to synthesize the effectiveness of these strategies for persons with SCI in order to establish their functional impacts and clinical relevance.

    METHODS: Published scientific literature pertaining to the reduction of FES-induced muscle fatigue was identified through searches of the following databases: Science Direct, Medline, IEEE Xplore, SpringerLink, PubMed and Nature, from the earliest returned record until June 2015. Titles and abstracts were screened to obtain 35 studies that met the inclusion criteria for this systematic review.

    RESULTS: Following the evaluation of methodological quality (mean (SD), 50 (6) %) of the reviewed studies using the Downs and Black scale, the largest treatment effects reported to reduce muscle fatigue mainly investigated isometric contractions of limited functional and clinical relevance (n = 28). Some investigations (n = 13) lacked randomisation, while others were characterised by small sample sizes with low statistical power. Nevertheless, the clinical significance of emerging trends to improve fatigue-resistance during FES included (i) optimizing electrode positioning, (ii) fine-tuning of stimulation patterns and other FES parameters, (iii) adjustments to the mode and frequency of exercise training, and (iv) biofeedback-assisted FES-exercise to promote selective recruitment of fatigue-resistant motor units.

    CONCLUSION: Although the need for further in-depth clinical trials (especially RCTs) was clearly warranted to establish external validity of outcomes, current evidence was sufficient to support the validity of certain techniques for rapid fatigue-reduction in order to promote FES therapy as an integral part of SCI rehabilitation. It is anticipated that this information will be valuable to clinicians and other allied health professionals administering FES as a treatment option in rehabilitation and aid the development of effective rehabilitation interventions.

  19. Ibitoye MO, Hamzaid NA, Abdul Wahab AK, Hasnan N, Olatunji SO, Davis GM
    Comput Biol Med, 2020 02;117:103614.
    PMID: 32072969 DOI: 10.1016/j.compbiomed.2020.103614
    BACKGROUND AND OBJECTIVE: Using traditional regression modelling, we have previously demonstrated a positive and strong relationship between paralyzed knee extensors' mechanomyographic (MMG) signals and neuromuscular electrical stimulation (NMES)-assisted knee torque in persons with spinal cord injuries. In the present study, a method of estimating NMES-evoked knee torque from the knee extensors' MMG signals using support vector regression (SVR) modelling is introduced and performed in eight persons with chronic and motor complete spinal lesions.

    METHODS: The model was developed to estimate knee torque from experimentally derived MMG signals and other parameters related to torque production, including the knee angle and stimulation intensity, during NMES-assisted knee extension.

    RESULTS: When the relationship between the actual and predicted torques was quantified using the coefficient of determination (R2), with a Gaussian support vector kernel, the R2 value indicated an estimation accuracy of 95% for the training subset and 94% for the testing subset while the polynomial support vector kernel indicated an accuracy of 92% for the training subset and 91% for the testing subset. For the Gaussian kernel, the root mean square error of the model was 6.28 for the training set and 8.19 for testing set, while the polynomial kernels for the training and testing sets were 7.99 and 9.82, respectively.

    CONCLUSIONS: These results showed good predictive accuracy for SVR modelling, which can be generalized, and suggested that the MMG signals from paralyzed knee extensors are a suitable proxy for the NMES-assisted torque produced during repeated bouts of isometric knee extension tasks. This finding has potential implications for using MMG signals as torque sensors in NMES closed-loop systems and provides valuable information for implementing this method in research and clinical settings.

  20. Ibitoye MO, Hamzaid NA, Abdul Wahab AK, Hasnan N, Olatunji SO, Davis GM
    Sensors (Basel), 2016 Jul 19;16(7).
    PMID: 27447638 DOI: 10.3390/s16071115
    The difficulty of real-time muscle force or joint torque estimation during neuromuscular electrical stimulation (NMES) in physical therapy and exercise science has motivated recent research interest in torque estimation from other muscle characteristics. This study investigated the accuracy of a computational intelligence technique for estimating NMES-evoked knee extension torque based on the Mechanomyographic signals (MMG) of contracting muscles that were recorded from eight healthy males. Simulation of the knee torque was modelled via Support Vector Regression (SVR) due to its good generalization ability in related fields. Inputs to the proposed model were MMG amplitude characteristics, the level of electrical stimulation or contraction intensity, and knee angle. Gaussian kernel function, as well as its optimal parameters were identified with the best performance measure and were applied as the SVR kernel function to build an effective knee torque estimation model. To train and test the model, the data were partitioned into training (70%) and testing (30%) subsets, respectively. The SVR estimation accuracy, based on the coefficient of determination (R²) between the actual and the estimated torque values was up to 94% and 89% during the training and testing cases, with root mean square errors (RMSE) of 9.48 and 12.95, respectively. The knee torque estimations obtained using SVR modelling agreed well with the experimental data from an isokinetic dynamometer. These findings support the realization of a closed-loop NMES system for functional tasks using MMG as the feedback signal source and an SVR algorithm for joint torque estimation.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links