RECENT FINDINGS: Climate change is responsible for extreme weather conditions (shifts in rainfall, floods, droughts, and forest fires) and global warming. These consequences affect basic human needs of water and food, causing changes in population dynamics and pose significant threats to digestive health, including common esophageal disorders like GERD, EoE, and esophageal cancers. The changing patterns of esophageal diseases with climate change are likely mediated through risk factors, including nutrition, pollutants, microplastics, and the microbiota-gut-brain axis. The healthcare process itself, including GI endoscopy practices commonly employed in diagnosing and therapeutics of esophageal diseases, may, in turn, contribute to climate change through plastic wastage and greenhouse gas emissions, thus creating the climate change lifecycle. Breaking the cycle would involve changes at the individual level, community level, and national policy level. Prevention is key, with individuals identifying and remediating risk factors and reducing carbon footprints. The ABC (Advocacy, Broadcast, and Collaborate) activities would help enhance awareness at the community level. Higher-level programs such as the Bracing Resilience Against Climate Effects (BRACE) would lead to broader and larger-scale adoption of public health adaptation strategies at the national level. The impact of climate change on esophageal disorders is likely real, mediated by several risk factors, and creates a climate change lifecycle that may only break if changes are made at individual, community, and national levels.
METHODS: Eligibility criteria included English language full text articles, in-vivo human studies only, and searching the databases using pre-defined terms. We based our analysis and reporting on the PRISMA guideline and examined the quality of evidence using the risk of bias assessment tool.
RESULTS: Of 3616 articles screened, 223 evaluated and 26 were eventually included in this review. Nine were high risk for bias, three were unclear risk and the rest low risk for bias. Microplastics were detected in 8/12 human organ systems including cardiovascular, digestive, endocrine, integumentary, lymphatic, respiratory, reproductive and urinary. Microplastics were also observed in other human biological samples such as breastmilk, meconium, semen, stool, sputum and urine. Microplastics can be characterised based on shape, colours, and polymer type. Potential entry routes into human included atmospheric inhalation and ingestion through food and water. The extraction techniques for analysis of microplastics in human tissues vary significantly, each offering distinct advantages and limitations.
CONCLUSIONS: Microplastics are commonly detected in human tissues and organs, with distinct characteristics and entry routes, and variable analytical techniques exist.
Methods: Colectomy samples were obtained from 11 adults (mean age 45.7, six males) who were residents of Northeastern Peninsular Malaysia. Microplastics were identified following chemical digestion of specimens and subsequent filtration. The samples were then examined for characteristics (abundance, length, shape, and color) and composition of three common polymer types using stereo- and Fourier Transform InfraRed (FTIR) microscopes.
Results: Microplastics were detected in all 11 specimens with an average of 331 particles/individual specimen or 28.1 ± 15.4 particles/g tissue. Filaments or fibers accounted for 96.1% of particles, and 73.1% of all filaments were transparent. Out of 40 random filaments from 10 specimens (one had indeterminate spectra patterns), 90% were polycarbonate, 50% were polyamide, and 40% were polypropylene.
Conclusion: Our study suggests that microplastics are ubiquitously present in the human colon.