Displaying publications 1 - 20 of 58 in total

Abstract:
Sort:
  1. Abid O, Imran S, Taha M, Ismail NH, Jamil W, Kashif SM, et al.
    Mol Divers, 2021 May;25(2):995-1009.
    PMID: 32301032 DOI: 10.1007/s11030-020-10084-4
    The β-glucuronidase, a lysosomal enzyme, catalyzes the cleavage of glucuronosyl-O-bonds. Its inhibitors play a significant role in different medicinal therapies as they cause a decrease in carcinogen-induced colonic tumors by reducing the level of toxic substances present in the intestine. Among those inhibitors, bisindole derivatives had displayed promising β-glucuronidase inhibition activity. In the current study, hydrazone derivatives of bisindolymethane (1-30) were synthesized and evaluated for in vitro β-glucuronidase inhibitory activity. Twenty-eight analogs demonstrated better activity (IC50 = 0.50-46.5 µM) than standard D-saccharic acid 1,4-lactone (IC50 = 48.4 ± 1.25 µM). Compounds with hydroxyl group like 6 (0.60 ± 0.01 µM), 20 (1.50 ± 0.10 µM) and 25 (0.50 ± 0.01 µM) exhibited the most potent inhibitory activity, followed by analogs with fluorine 21 (3.50 ± 0.10 µM) and chlorine 23 (8.20 ± 0.20 µM) substituents. The presence of hydroxyl group at the aromatic side chain was observed as the main contributing factor in the inhibitory potential. From the docking studies, it was predicted that the active compounds can fit properly in the binding groove of the β-glucuronidase and displayed significant binding interactions with essential residues.
  2. Imran S, Taha M, Ismail NH, Kashif SM, Rahim F, Jamil W, et al.
    Eur J Med Chem, 2015 Nov 13;105:156-70.
    PMID: 26491979 DOI: 10.1016/j.ejmech.2015.10.017
    Thirty derivatives of flavone hydrazone (5-34) had been synthesized through a five-step reaction and screened for their α-glucosidase inhibition activity. Chalcone 1 was synthesized through aldol condensation then subjected through oxidative cyclization, esterification, and condensation reaction to afford the final products. The result for baker's yeast α-glucosidase (EC 3.2.1.20) inhibition assay showed that all compounds are active with reference to the IC50 value of the acarbose (standard drug) except for compound 3. Increase in activity observed for compounds 2 to 34 clearly highlights the importance of flavone, hydrazide and hydrazone linkage in suppressing the activity of α-glucosidase. Additional functional group on N-benzylidene moiety further enhances the activity significantly. Compound 5 (15.4 ± 0.22 μM), a 2,4,6-trihydroxy substituted compound, is the most active compound in the series. Other compounds which were found to be active are those having chlorine, fluorine, and nitro substituents. Compounds with methoxy, pyridine, and methyl substituents are weakly active. Further studies showed that they are not active in inhibiting histone deacetylase activity and do not possess any cytotoxic properties. QSAR model was being developed to further identify the structural requirements contributing to the activity. Using Discovery Studio (DS) 2.5, various 2D descriptors were being used to develop the model. The QSAR model is able to predict the pIC50 and could be used as a prediction tool for compounds having the same skeletal framework. Molecular docking was done for all compounds using homology model of α-glucosidase to identify important binding modes responsible for inhibition activity.
  3. Salar U, Taha M, Khan KM, Ismail NH, Imran S, Perveen S, et al.
    Eur J Med Chem, 2016 Oct 21;122:196-204.
    PMID: 27371923 DOI: 10.1016/j.ejmech.2016.06.037
    3-Thiazolylcoumarin derivatives 1-14 were synthesized via one-pot two step reactions, and screened for in vitro α-glucosidase inhibitory activity. All compounds showed inhibitory activity in the range of IC50 = 0.12 ± 0.01-16.20 ± 0.23 μM as compared to standard acarbose (IC50 = 38.25 ± 0.12 μM), and also found to be nontoxic. Molecular docking study was carried out in order to establish the structure-activity relationship (SAR) which demonstrated that electron rich centers at one and electron withdrawing centers at the other end of the molecules showed strong inhibitory activity. All the synthesized compounds were characterized by spectroscopic techniques such as EI-MS, HREI-MS, (1)H NMR and (13)C NMR. CHN analysis was also performed.
  4. Taha M, Baharudin MS, Ismail NH, Imran S, Khan MN, Rahim F, et al.
    Bioorg Chem, 2018 10;80:36-42.
    PMID: 29864686 DOI: 10.1016/j.bioorg.2018.05.021
    In search of potent α-amylase inhibitor we have synthesized eighteen indole analogs (1-18), characterized by NMR and HR-EIMS and screened for α-amylase inhibitory activity. All analogs exhibited a variable degree of α-amylase inhibition with IC50 values ranging between 2.031 ± 0.11 and 2.633 ± 0.05 μM when compared with standard acarbose having IC50 values 1.927 ± 0.17 μM. All compounds showed good α-amylase inhibition. Compound 14 was found to be the most potent analog among the series. Structure-activity relationship has been established for all compounds mainly based on bringing about the difference of substituents on phenyl ring. To understand the binding interaction of the most active analogs molecular docking study was performed.
  5. Taha M, Shah SAA, Imran S, Afifi M, Chigurupati S, Selvaraj M, et al.
    Bioorg Chem, 2017 12;75:78-85.
    PMID: 28918064 DOI: 10.1016/j.bioorg.2017.09.002
    The α-amylase acts as attractive target to treat type-2 diabetes mellitus. Therefore in discovering a small molecule as α-amylase inhibitor, we have synthesized benzofuran carbohydrazide analogs (1-25), characterized through different spectroscopic techniques such as 1HNMR and EI-MS. All screened analog shows good α-amylase inhibitory potentials with IC50 value ranging between 1.078±0.19 and 2.926±0.05µM when compared with acarbose having IC50=0.62±0.22µM. Only nine analogs among the series such as analogs 3, 5, 7, 8, 10, 12, 21, 23 and 24 exhibit good inhibitory potential with IC50 values 1.644±0.128, 1.078±0.19, 1.245±0.25, 1.843±0.19, 1.350±0.24, 1.629±0.015, 1.353±0.232, 1.359±0.119 and 1.488±0.07µM when compare with standard drug acarbose. All other analogs showed good to moderate α-amylase inhibitory potentials. The SAR study was conducted on the basis of substituent difference at the phenyl ring. The binding interaction between analogs and active site of enzyme was confirmed by docking studies.
  6. Taha M, Rahim F, Hayat S, Chigurupati S, Khan KM, Imran S, et al.
    Future Med Chem, 2023 Mar;15(5):405-419.
    PMID: 37013918 DOI: 10.4155/fmc-2022-0306
    Aim: To synthesize pyrrolopyridine-based thiazolotriazoles as a novel class of α-amylase and α-glucosidase inhibitors and to determine their enzymatic kinetics. Methodology: Pyrrolopyridine-based thiazolotriazole analogs (1-24) were synthesized and characterized through proton nuclear magnetic resonance, carbon-13 nuclear magnetic resonance and high-resolution electron ionization mass spectrometry. Results: All synthesized analogs displayed good inhibitory potential of α-amylase and α-glucosidase ranging 17.65-70.7 μM and 18.15-71.97 μM, respectively, compared with the reference drug, acarbose (11.98 μM and 12.79 μM). Analog 3 was the most potent among the synthesized analogs, having α-amylase and α-glucosidase inhibitory activity at 17.65 and 18.15 μM, respectively. The structure-activity relationship and binding modes of interactions between selected analogs were confirmed via docking and enzymatic kinetics studies. The compounds (1-24) were tested for cytotoxicity against the 3T3 mouse fibroblast cell line and were observed to be nontoxic.
  7. Taha M, Sultan S, Nuzar HA, Rahim F, Imran S, Ismail NH, et al.
    Bioorg Med Chem, 2016 08 15;24(16):3696-704.
    PMID: 27312423 DOI: 10.1016/j.bmc.2016.06.008
    Thirty N-arylidenequinoline-3-carbohydrazides (1-30) have been synthesized and evaluated against β-glucuronidase inhibitory potential. Twenty four analogs showed outstanding β-glucuronidase activity having IC50 values ranging between 2.11±0.05 and 46.14±0.95 than standard d-saccharic acid 1,4 lactone (IC50=48.4±1.25μM). Six analogs showed good β-glucuronidase activity having IC50 values ranging between 49.38±0.90 and 80.10±1.80. Structure activity relationship and the interaction of the active compounds and enzyme active site with the help of docking studies were established. Our study identifies novel series of potent β-glucuronidase inhibitors for further investigation.
  8. Yu CX, Tan JW, Rullah K, Imran S, Tham CL
    J Biomol Struct Dyn, 2023;41(22):12978-12996.
    PMID: 36709457 DOI: 10.1080/07391102.2023.2171131
    Dengue hemorrhagic fever (DHF) is severe dengue with a hallmark of vascular leakage. β-tryptase has been found to promote vascular leakage in DHF patients, which could be a potential target for DHF treatment. This study aims to develop a theoretical background for designing and selecting human β-tryptase inhibitors through computational studies. Thirty-four α-keto-[1,2,3]-oxadiazoles scaffold-based compounds were used to generate 2D-QSAR models and for molecular docking studies with β-tryptase (PDB Code 4A6L). In addition, molecular dynamics (MD) simulation and molecular mechanics generalised born surface area (MM-GBSA) analysis on the binding of the reported most active compound, compound 11e, towards β-tryptase were performed. Finally, a structure-based pharmacophore model was generated. The selected 2D-QSAR models have statistically proven good models by internal and external validation as well as the y-randomization test. The docking results of compound 11e showed lower CDOCKER energy than the 4A6L co-crystallised ligand and a similar binding pattern as the 4A6L co-crystallised ligand. From molecular dynamics simulation, 4A6L in compound 11e bound state has RMSD below 2 Å throughout the 500 ns simulation, indicating the docked complex is stable. Besides, MM-GBSA analysis suggested the 4A6L-compound 11e docked complex (-66.04 Kcal/mol) is structurally as stable as the 4A6L-native ligand co-crystallized structure (-66.84 Kcal/mol). The best pharmacophore model identified features included hydrogen bond acceptor, ionic interaction, hydrophobic interaction, and aromatic ring, which contribute to the inhibitory potency of a compound. This study supplied insight and knowledge for developing novel chemical compounds with improved inhibition of β-tryptase.Communicated by Ramaswamy H. Sarma.
  9. Imran S, Taha M, Ismail NH, Khan KM, Naz F, Hussain M, et al.
    Molecules, 2014;19(8):11722-40.
    PMID: 25102118 DOI: 10.3390/molecules190811722
    In an effort to develop new antibacterial drugs, some novel bisindolylmethane derivatives containing Schiff base moieties were prepared and screened for their antibacterial activity. The synthesis of the bisindolylmethane Schiff base derivatives 3-26 was carried out in three steps. First, the nitro group of 3,3'-((4-nitrophenyl)-methylene)bis(1H-indole) (1) was reduced to give the amino substituted bisindolylmethane 2 without affecting the unsaturation of the bisindolylmethane moiety using nickel boride in situ generated. Reduction of compound 1 using various catalysts showed that combination of sodium borohydride and nickel acetate provides the highest yield for compound 2. Bisindolylmethane Schiff base derivatives were synthesized by coupling various benzaldehydes with amino substituted bisindolylmethane 2. All synthesized compounds were characterized by various spectroscopic methods. The bisindolylmethane Schiff base derivatives were evaluated against selected Gram-positive and Gram-negative bacterial strains. Derivatives having halogen and nitro substituent display weak to moderate antibacterial activity against Salmonella typhi, S. paratyphi A and S. paratyphi B.
  10. Huq AKMM, Roney M, Imran S, Khan SU, Uddin MN, Htar TT, et al.
    J Biomol Struct Dyn, 2023;41(23):13923-13936.
    PMID: 36786766 DOI: 10.1080/07391102.2023.2176926
    Since the first prevalence of COVID-19 in 2019, it still remains the most devastating pandemic throughout the world. The current research aimed to find potential natural products to inhibit the novel coronavirus and associated infection by MD simulation and network pharmacology approach. Molecular docking was performed for 39 natural products having potent anti-SARS-CoV activity. Five natural products showed high binding interaction with the viral main protease for the SARS-CoV-2 virus, where 3β,12-diacetoxyabieta-6,8,11,13 tetraene showed stable binding in MD simulation until 100 ns. Both 3β,12-diacetoxyabieta-6,8,11,13 tetraene and tomentin A targeted 11 common genes that are related to COVID-19 and interact with each other. Gene ontology development analysis further showed that all these 11 genes are attached to various biological processes. The KEGG pathway analysis also showed that the proteins that are targeted by 3β,12-diacetoxyabieta-6,8,11,13 tetraene and tomentin A are associated with multiple pathways related to COVID-19 infection. Furthermore, the ADMET and MDS studies reveals 3β,12-diacetoxyabieta-6,8,11,13 as the best-suited compound for oral drug delivery.Communicated by Ramaswamy H. Sarma.
  11. Nurfazilah Wan Yusop S, Imran S, Ilham Adenan M, Ashraf K, Sultan S
    Steroids, 2021 07;171:108832.
    PMID: 33831403 DOI: 10.1016/j.steroids.2021.108832
    The fungal transformations of ethynodiol diacetate (1) were investigated for the first-time using Botrytis cinerea, Trichothecium roseum, and R3-2 SP 17. The metabolites obtained are as following: 17α-Ethynyl-17β-acetoxyestr-4-en-3-one-15β-ol (2), 19-nor-17a-ethynyltestosterone (3), and 17α-ethynyl-3β-hydroxy-17β-acetoxyestr-4-ene (4). The new metabolite, 2 (IC50 = 104.8 µM), which has ketone group at C-3, and the β-hydroxyl group at C-15, resulted in an almost equipotent strength with the parent compound (IC50 = 103.3 µM) against proliferation of SH-SY5Y cells. The previously reported biotransformed product, 3, showed almost equal strength to 1 against acetylcholinesterase. Molecular modelling studies were carried out to understand the observed experimental activities, and also to obtain more information on the binding mode and the interactions between the biotransformed products, and enzyme.
  12. Yusop SNW, Imran S, Adenan MI, Sultan S
    Steroids, 2020 12;164:108735.
    PMID: 32976918 DOI: 10.1016/j.steroids.2020.108735
    The fungal transformations of medroxyrogesterone (1) were investigated for the first time using Cunninghamella elegans, Trichothecium roseum, and Mucor plumbeus. The metabolites obtained are as following: 6β, 20-dihydroxymedroxyprogesterone (2), 12β-hydroxymedroxyprogesterone (3), 6β, 11β-dihydroxymedroxyprogesterone (4), 16β-hydroxymedroxyprogesterone (5), 11α, 17-dihydroxy-6α-methylpregn-4-ene-3, 20-dione (6), 11-oxo-medroxyprogesterone (7), 6α-methyl-17α-hydroxypregn-1,4-diene-3,20-dione (8), and 6β-hydroxymedroxyprogesterone (9), 15β-hydroxymedroxyprogesterone (10), 6α-methyl-17α, 11β-dihydroxy-5α-pregnan-3, 20-dione (11), 11β-hydroxymedroxyprogesterone (12), and 11α, 20-dihydroxymedroxyprogesterone (13). Among all the microbial transformed products, the newly isolated biotransformed product 13 showed the most potent activity against proliferation of SH-SY5Y cells. Compounds 12, 5, 6, 9, 11, and 3 (in descending order of activity) also showed some extent of activity against SH-SY5Y tumour cell line. The never been reported biotransformed product, 2, showed the most potent inhibitory activity against acetylcholinesterase. Molecular modelling studies were carried out to understand the observed experimental activities, and also to obtain more information on the binding mode and the interactions between the biotransformed products, and enzyme.
  13. Taha M, Ismail NH, Imran S, Wadood A, Rahim F, Riaz M
    Bioorg Med Chem, 2015 Nov 15;23(22):7211-8.
    PMID: 26507431 DOI: 10.1016/j.bmc.2015.10.017
    Disulfide analogs (1-20) have been synthesized, characterized by HR-MS, (1)H NMR and (13)C NMR and screened for urease inhibitory potential. All compounds were found to have varied degree of urease inhibitory potential ranging in between 0.4 ± 0.01 and 18.60 ± 1.24 μM when compared with standard inhibitor thiourea with IC50 19.46 ± 1.20 μM. Structure activity relationship has been established. The binding interactions of compounds with enzyme were confirmed through molecular docking. All the synthesized compounds 1-20 are new. Our compounds are cheaply synthesizable with high yield and can further be studied to discovery lead compounds. We further, tested for carbonic anhydrase, PDE1 and butyrylcholinesterase but they show no activity. On the other hand we evaluated all compounds for cytotoxicity they showed no toxicity.
  14. Taha M, Ismail NH, Imran S, Wadood A, Rahim F, Khan KM, et al.
    Bioorg Chem, 2016 Jun;66:80-7.
    PMID: 27038849 DOI: 10.1016/j.bioorg.2016.03.010
    Benzothiazole analogs (1-20) have been synthesized, characterized by EI-MS and (1)H NMR, and evaluated for urease inhibition activity. All compounds showed excellent urease inhibitory potential varying from 1.4±0.10 to 34.43±2.10μM when compared with standard thiourea (IC50 19.46±1.20μM). Among the series seventeen (17) analogs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, and 18 showed outstanding urease inhibitory potential. Analogs 15 and 19 also showed good urease inhibition activity. When we compare the activity of N-phenylthiourea 20 with all substituted phenyl derivatives (1-18) we found that compound 15 showed less activity than compound 20 having 3-methoxy substituent. The binding interactions of these active analogs were confirmed through molecular docking.
  15. Salar U, Taha M, Ismail NH, Khan KM, Imran S, Perveen S, et al.
    Bioorg Med Chem, 2016 Apr 15;24(8):1909-18.
    PMID: 26994638 DOI: 10.1016/j.bmc.2016.03.020
    Thiadiazole derivatives 1-24 were synthesized via a single step reaction and screened for in vitro β-glucuronidase inhibitory activity. All the synthetic compounds displayed good inhibitory activity in the range of IC50=2.16±0.01-58.06±1.60μM as compare to standard d-saccharic acid 1,4-lactone (IC50=48.4±1.25μM). Molecular docking study was conducted in order to establish the structure-activity relationship (SAR) which demonstrated that thiadiazole as well as both aryl moieties (aryl and N-aryl) involved to exhibit the inhibitory potential. All the synthetic compounds were characterized by spectroscopic techniques (1)H, (13)C NMR, and EIMS.
  16. Haq A, Svobodová J, Imran S, Stanford C, Razzaque MS
    J Steroid Biochem Mol Biol, 2016 11;164:209-213.
    PMID: 26877203 DOI: 10.1016/j.jsbmb.2016.02.007
    Vitamin D deficiency is a global problem, thought to be related to lack of sunlight exposure, and usually accompanied by reduced dietary intake. This study was designed to determine vitamin D status of 60,979 patients admitted to the Burjeel Hospital of VPS healthcare in Abu Dhabi, United Arab Emirates (UAE) from October 2012 to September 2014. The total concentrations of vitamin D [25(OH)D] of all the studied patients were measured in a single laboratory. Of the studied patients, 57.5% were female and 42.5% were male. Serum 25(OH)D (total) measurements showed 82.5% of the studied patients have vitamin D deficiency to insufficiency. 26.4% of females and 18.4% of males have extreme deficiency of 25(OH)D. There was higher variability of vitamin D in group of females then males according to coefficient of variation. In our studied cohort teenagers (13-19 years) have shown the lowest levels of serum vitamin D (data not shown and will be communicated as a separate publication). The prevalence of hypovitaminosis D is significantly high among population of UAE, Saudi Arabia and many Middle Eastern countries, especially among women, despite abundant sunshine. 86.1% UAE nationals and 78.9% visitors of other nationalities were found <75nmol/L of 25(OH)D. 28.4% of UAE nationals and 17.5% of visitors of other nationalities have extreme deficiency of 25(OH)D. Our results are significant, as all of our patients are residing permanently in the UAE or visitors that has yearlong sunlight. In addition, measuring 25(OH)D concentrations in a single laboratory minimized test level variations. Our current study formed the basis of further studies to determine if vitamin D deficiency and insufficiency can aggravate systemic diseases, including hypertension, diabetes or obesity that are also wide-spread in the Middle Eastern region.
  17. Alomari M, Taha M, Imran S, Jamil W, Selvaraj M, Uddin N, et al.
    Bioorg Chem, 2019 11;92:103235.
    PMID: 31494327 DOI: 10.1016/j.bioorg.2019.103235
    Hybrid bis-coumarin derivatives 1-18 were synthesized and evaluated for their in vitro urease inhibitory potential. All compounds showed outstanding urease inhibitory potential with IC50 value (The half maximal inhibitory concentration) ranging in between 0.12 SD 0.01 and 38.04 SD 0.63 µM (SD standard deviation). When compared with the standard thiourea (IC50 = 21.40 ± 0.21 µM). Among these derivatives, compounds 7 (IC50 = 0.29 ± 0.01), 9 (IC50 = 2.4 ± 0.05), 10 (IC50 = 2.25 ± 0.05) and 16 (IC50 = 0.12 ± 0.01) are better inhibitors of the urease compared with thiourea (IC50 = 21.40 ± 0.21 µM). To find structure-activity relationship molecular docking as well as absorption, distribution, metabolism, and excretion (ADME) studies were also performed. Various spectroscopic techniques like 1H NMR, 13C NMR, and EI-MS were used for characterization of all synthesized analogs. All compounds were tested for cytotoxicity and found non-toxic.
  18. Taha M, Arbin M, Ahmat N, Imran S, Rahim F
    Bioorg Chem, 2018 04;77:47-55.
    PMID: 29331764 DOI: 10.1016/j.bioorg.2018.01.002
    Due to the great biological importance of β-glucuronidase inhibitors, here in this study, we have synthesized a library of novel benzothiazole derivatives (1-30), characterized by different spectroscopic methods and evaluated for β-glucuronidase inhibitory potential. Among the series sixteen compounds i.e.1-6, 8, 9, 11, 14, 15, 20-23 and 26 showed outstanding inhibitory potential with IC50 value ranging in between 16.50 ± 0.26 and 59.45 ± 1.12 when compared with standard d-Saccharic acid 1,4-lactone (48.4 ± 1.25 µM). Except compound 8 and 23 all active analogs showed better potential than the standard. Structure activity relationship has been established.
  19. Taha M, Alshamrani FJ, Rahim F, Hayat S, Ullah H, Zaman K, et al.
    Molecules, 2019 Oct 23;24(21).
    PMID: 31652777 DOI: 10.3390/molecules24213819
    A new class of triazinoindole-bearing thiosemicarbazides (1-25) was synthesized and evaluated for α-glucosidase inhibitory potential. All synthesized analogs exhibited excellent inhibitory potential, with IC50 values ranging from 1.30 ± 0.01 to 35.80 ± 0.80 µM when compared to standard acarbose (an IC50 value of 38.60 ± 0.20 µM). Among the series, analogs 1 and 23 were found to be the most potent, with IC50 values of 1.30 ± 0.05 and 1.30 ± 0.01 µM, respectively. The structure-activity relationship (SAR) was mainly based upon bringing about different substituents on the phenyl rings. To confirm the binding interactions, a molecular docking study was performed.
  20. Taha M, Ismail NH, Imran S, Wadood A, Rahim F, Saad SM, et al.
    Bioorg Chem, 2016 Jun;66:117-23.
    PMID: 27149363 DOI: 10.1016/j.bioorg.2016.04.006
    Twenty derivatives of 5-aryl-2-(6'-nitrobenzofuran-2'-yl)-1,3,4-oxadiazoles (1-20) were synthesized and evaluated for their α-glucosidase inhibitory activities. Compounds containing hydroxyl and halogens (1-6, and 8-18) were found to be five to seventy folds more active with IC50 values in the range of 12.75±0.10-162.05±1.65μM, in comparison with the standard drug, acarbose (IC50=856.45±5.60μM). Current study explores the α-glucosidase inhibition of a hybrid class of compounds of oxadiazole and benzofurans. These findings may invite researchers to work in the area of treatment of hyperglycemia. Docking studies showed that most compounds are interacting with important amino acids Glu 276, Asp 214 and Phe 177 through hydrogen bonds and arene-arene interaction.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links