Displaying publications 1 - 20 of 69 in total

Abstract:
Sort:
  1. Abdul Kadir NA, Rahmat A, Jaafar HZ
    J Obes, 2015;2015:846041.
    PMID: 26171246 DOI: 10.1155/2015/846041
    This study aims to investigate the protective effect of Cyphomandra betacea in adult male Sprague-Dawley rats fed with high fat diet. Rats were fed on either normal chow or high fat diet for 10 weeks for obesity induction phase and subsequently received C. betacea extract at low dose (150 mg kg(-1)), medium dose (200 mg kg(-1)), or high dose (300 mg kg(-1)) or placebo via oral gavages for another 7 weeks for treatment phase. Treatment of obese rats with C. betacea extracts led to a significant decrease in total cholesterol and significant increase in HDL-C (p < 0.05). Also there was a trend of positive reduction in blood glucose, triglyceride, and LDL-C with positive reduction of body weight detected in medium and high dosage of C. betacea extract. Interestingly, C. betacea treated rats showed positive improvement of superoxide dismutase (SOD) activity and glutathione peroxidase (GPx) activity along with a significant increase of total antioxidant status (TAS) (p < 0.05). Further, rats treated with C. betacea show significantly lower in TNF-α and IL-6 activities (p < 0.05). This study demonstrates the potential use of Cyphomandra betacea extract for weight maintenance and complimentary therapy to suppress some obesity complication signs.
  2. Ahmed S, Gul S, Idris F, Hussain A, Zia-Ul-Haq M, Jaafar HZ, et al.
    Molecules, 2014;19(8):11385-94.
    PMID: 25090125 DOI: 10.3390/molecules190811385
    Human plasma inhibits arachidonic acid metabolism and platelet aggregation. This helps human form a haemostatic control system that prevents the progress of certain aggregatory or inflammatory reactions. Whether this property of plasma is unique to human or extends to other species is not well known. It is speculated that this protective ability of plasma remains evolutionarily conserved in different mammals. In order to confirm this, the effect of plasma from 12 different mammalian species was investigated for its inhibitory potential against arachidonic acid metabolism and platelet aggregation. Metabolism of arachidonic acid by cyclooxygenase and lipoxygenase pathways was studies using radio-immuno assay and thin layer chromatography while platelet aggregation in the plasma of various mammals was monitored following turbedmetric method in a dual channel aggregometer. Results indicate that inhibition of AA metabolism and platelet aggregation is a common feature of plasma obtained from different mammalian species, although there exists large interspecies variation. This shows that besides human, other mammals also possess general protective mechanisms against various aggregatory and inflammatory conditions and this anti-inflammatory property of the plasma is evolutionarily conserved in mammalian species. The most likely candidates responsible for these properties of plasma include haptoglobin, albumin and lipoproteins.
  3. Asghar N, Naqvi SA, Hussain Z, Rasool N, Khan ZA, Shahzad SA, et al.
    Chem Cent J, 2016;10:5.
    PMID: 26848308 DOI: 10.1186/s13065-016-0149-0
    Carica papaya is a well known medicinal plant used in the West and Asian countries to cope several diseases. Patients were advised to eat papaya fruit frequently during dengue fever epidemic in Pakistan by physicians. This study was conducted to establish Polyphenols, flavonoids and antioxidant potential profile of extracts of all major parts of the C. papaya with seven major solvents i.e. water, ethanol, methanol, n-butanol, dichloromethane, ethyl acetate, and n-hexane.
  4. Ashraf I, Zubair M, Rizwan K, Rasool N, Jamil M, Khan SA, et al.
    Chem Cent J, 2018 Dec 17;12(1):135.
    PMID: 30556121 DOI: 10.1186/s13065-018-0495-1
    This research work was executed to determine chemical composition, anti-oxidant and anti-microbial potential of the essential oils extracted from the leaves and stem of Daphne mucronata Royle. From leaves and stem oils fifty-one different constituents were identified through GC/MS examination. The antioxidant potential evaluated through DPPH free radical scavenging activity and %-inhibition of peroxidation in linoleic acid system. The stem's essential oil showed the good antioxidant activity as compared to leaves essential oil. Results of Antimicrobial activity revealed that both stem and leaves oils showed strong activity against Candida albicans with large inhibition zone (22.2 ± 0.01, 18.9 ± 0.20 mm) and lowest MIC values (0.98 ± 0.005, 2.44 ± 0.002 mg/mL) respectively. Leaves essential was also active against Escherichia coli with inhibition zone of 8.88 ± 0.01 mm and MIC values of 11.2 ± 0.40 mg/mL. These results suggested that the plant's essential oils would be a potential cradle for the natural product based antimicrobial as well as antioxidant agents.
  5. Batool T, Rasool N, Gull Y, Noreen M, Nasim FU, Yaqoob A, et al.
    PLoS One, 2014;9(12):e115457.
    PMID: 25545159 DOI: 10.1371/journal.pone.0115457
    A highly convenient method has been developed for the synthesis of (prop-2-ynyloxy) benzene and its derivatives. Differently substituted phenol and aniline derivatives were allowed to react with propargyl bromide in the presence of K2CO3 base and acetone as solvent. The compounds were synthesized in good yields (53-85%). Low cost, high yields and easy availability of compounds helped in the synthesis. Electron withdrawing groups favor the formation of stable phenoxide ion thus in turn favors the formation of product while electron donating groups do not favor the reaction. Phenol derivatives gave good yields as compared to that of aniline. As aprotic polar solvents favor SN2 type reactions so acetone provided best solvation for the reactions. K2CO3 was proved to be good for the synthesis. Antibacterial, Antiurease and NO scavenging activity of synthesized compounds were also examined. 4-bromo-2-chloro-1-(prop-2-ynyloxy)benzene 2a was found most active compound against urease enzyme with a percentage inhibition of 82.00±0.09 at 100 µg/mL with IC50 value of 60.2. 2-bromo-4-methyl-1-(prop-2-ynyloxy)benzene 2d was found potent antibacterial against Bacillus subtillus showing excellent inhibitory action with percentage inhibition of 55.67±0.26 at 100 µg/ml wih IC50 value of 79.9. Based on results, it can be concluded that some of the synthesized compounds may have potential antiurease and antibacterial effects against several harmful substances.
  6. Bukhari SA, Shamshari WA, Ur-Rahman M, Zia-Ul-Haq M, Jaafar HZ
    Molecules, 2014 Jul 11;19(7):10129-36.
    PMID: 25019556 DOI: 10.3390/molecules190710129
    Diabetes mellitus is a life threatening disease and scientists are doing their best to find a cost effective and permanent treatment of this malady. The recent trend is to control the disease by target base inhibiting of enzymes or proteins. Secreted frizzled-related protein 4 (SFRP4) is found to cause five times more risk of diabetes when expressed above average levels. This study was therefore designed to analyze the SFRP4 and to find its potential inhibitors. SFRP4 was analyzed by bio-informatics tools of sequence tool and structure tool. A total of three potential inhibitors of SFRP4 were found, namely cyclothiazide, clopamide and perindopril. These inhibitors showed significant interactions with SFRP4 as compared to other inhibitors as well as control (acetohexamide). The findings suggest the possible treatment of diabetes mellitus type 2 by inhibiting the SFRP4 using the inhibitors cyclothiazide, clopamide and perindopril.
  7. Dewanjee S, Dua TK, Khanra R, Das S, Barma S, Joardar S, et al.
    PLoS One, 2015;10(10):e0139831.
    PMID: 26473485 DOI: 10.1371/journal.pone.0139831
    BACKGROUND: Ipomoea aquatica (Convolvulaceae), an aquatic edible plant, is traditionally used against heavy metal toxicity in India. The current study intended to explore the protective role of edible (aqueous) extract of I. aquatica (AEIA) against experimentally induced Pb-intoxication.

    METHODS: The cytoprotective role of AEIA was measured on mouse hepatocytes by cell viability assay followed by Hoechst staining and flow cytometric assay. The effect on ROS production, lipid peroxidation, protein carbonylation, intracellular redox status were measured after incubating the hepatocytes with Pb-acetate (6.8 μM) along with AEIA (400 μg/ml). The effects on the expressions of apoptotic signal proteins were estimated by western blotting. The protective role of AEIA was measured by in vivo assay in mice. Haematological, serum biochemical, tissue redox status, Pb bioaccumulation and histological parameters were evaluated to estimate the protective role of AEIA (100 mg/kg) against Pb-acetate (5 mg/kg) intoxication.

    RESULTS: Pb-acetate treated hepatocytes showed a gradual reduction of cell viability dose-dependently with an IC50 value of 6.8 μM. Pb-acetate treated hepatocytes exhibited significantly enhanced levels (p < 0.01) of ROS production, lipid peroxidation, protein carbonylation with concomitant depletion (p < 0.01) of antioxidant enzymes and GSH. However, AEIA treatment could significantly restore the aforementioned parameters in murine hepatocytes near to normalcy. Besides, AEIA significantly reversed (p < 0.05-0.01) the alterations of transcription levels of apoptotic proteins viz. Bcl 2, Bad, Cyt C, Apaf-1, cleaved caspases [caspase 3, caspase 8 and caspase 9], Fas and Bid. In in vivo bioassay, Pb-acetate treatment caused significantly high intracellular Pb burden and oxidative pressure in the kidney, liver, heart, brain and testes in mice. In addition, the haematological and serum biochemical factors were changed significantly in Pb-acetate-treated animals. AEIA treatment restored significantly the evaluated-parameters to the near-normal position.

    CONCLUSION: The extract may offer the protective effect via counteracting with Pb mediated oxidative stress and/or promoting the elimination of Pb by chelating. The presence of substantial quantities of flavonoids, phenolics and saponins would be responsible for the overall protective effect.

  8. Faiz S, Zahoor AF, Rasool N, Yousaf M, Mansha A, Zia-Ul-Haq M, et al.
    Molecules, 2015;20(8):14699-745.
    PMID: 26287135 DOI: 10.3390/molecules200814699
    This review paper covers the major synthetic approaches attempted towards the synthesis of α-azido ketones, as well as the synthetic applications/consecutive reactions of α-azido ketones.
  9. Ghasemzadeh A, Jaafar HZ, Rahmat A
    Molecules, 2016 Jun 17;21(6).
    PMID: 27322227 DOI: 10.3390/molecules21060780
    The effects of different drying methods (freeze drying, vacuum oven drying, and shade drying) on the phytochemical constituents associated with the antioxidant activities of Z. officinale var. rubrum Theilade were evaluated to determine the optimal drying process for these rhizomes. Total flavonoid content (TFC), total phenolic content (TPC), and polyphenol oxidase (PPO) activity were measured using the spectrophotometric method. Individual phenolic acids and flavonoids, 6- and 8-gingerol and shogaol were identified by ultra-high performance liquid chromatography method. Ferric reducing antioxidant potential (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays were used for the evaluation of antioxidant activities. The highest reduction in moisture content was observed after freeze drying (82.97%), followed by vacuum oven drying (80.43%) and shade drying (72.65%). The highest TPC, TFC, and 6- and 8-shogaol contents were observed in samples dried by the vacuum oven drying method compared to other drying methods. The highest content of 6- and 8-gingerol was observed after freeze drying, followed by vacuum oven drying and shade drying methods. Fresh samples had the highest PPO activity and lowest content of flavonoid and phenolic acid compounds compared to dried samples. Rhizomes dried by the vacuum oven drying method represent the highest DPPH (52.9%) and FRAP activities (566.5 μM of Fe (II)/g DM), followed by freeze drying (48.3% and 527.1 μM of Fe (II)/g DM, respectively) and shade drying methods (37.64% and 471.8 μM of Fe (II)/g DM, respectively) with IC50 values of 27.2, 29.1, and 34.8 μg/mL, respectively. Negative and significant correlations were observed between PPO and antioxidant activity of rhizomes. Vacuum oven dried rhizomes can be utilized as an ingredient for the development of value-added food products as they contain high contents of phytochemicals with valuable antioxidant potential.
  10. Ghasemzadeh A, Jaafar HZ, Rahmat A
    BMC Complement Altern Med, 2015;15(1):422.
    PMID: 26613959 DOI: 10.1186/s12906-015-0873-3
    Strobilanthes crispus is a well-known herb in Malaysia with various pharmaceutical properties. S. crispus is known to contain several biologically active chemical constituents which are responsible for its pharmaceutical quality.
  11. Ghasemzadeh A, Nasiri A, Jaafar HZ, Baghdadi A, Ahmad I
    Molecules, 2014 Oct 30;19(11):17632-48.
    PMID: 25361426 DOI: 10.3390/molecules191117632
    In the current study, changes in secondary metabolite synthesis and the pharmaceutical quality of sabah snake grass leaves and buds were considered in relation to plant age (1 month, 6 months, and 1 year old). The activity of the enzyme chalcone synthase (CHS, EC 2.3.1.74) was measured, as it is a key enzyme for flavonoid production. Significant differences in total flavonoid (TF) production were observed between the three plant growth periods and the different plant parts. The highest contents of TF (6.32 mg/g dry weight [DW]) and total phenolic (TP) (18.21 mg/g DW) were recorded in 6-month-old buds. Among the flavonoids isolated in this study the most important ones based on concentration were from high to low as follows: catechin > quercetin > kaempferol > luteolin. Production of phenolic acids increased from 1 to 6 months, but after 6 months up to 1 year of age, they decreased significantly. The highest contents of caffeic acid (0.307 mg/g DW) and gallic acid (5.96 mg/g DW) were recorded in 1-year and 6-month-old buds, respectively. The lowest and highest activity of CHS was recorded in 1-month and 6-month-old buds with values of 3.6 and 9.5 nkat/mg protein, respectively. These results indicate that the increment in flavonoids and phenolic acids in 6-month-old buds can be attributed to an increase in CHS activity. The highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) activity was observed in the extract of 1-year-old buds followed by 6-month-old buds, with 50% of free radical scavenging (IC50) values of 64.6 and 73.5 µg/mL, respectively. Interestingly, a ferric reducing antioxidant power (FRAP) assay showed a higher activity in 6-month-old buds (488 μM of Fe(II)/g) than in 1-year-old buds (453 μM of Fe(II)/g), in contrast to the DPPH result. Significant correlations (p < 0.05) were observed between CHS enzyme activity and FRAP activity, TF, catechin, and kaempferol content. Extracts of 6-month-old bud exhibited a significant in vitro anticancer activity against HeLa cancer cells with IC50 value of 56.8 µg/mL. These results indicate that early harvesting of snake grass (6-month-old) may yield increased concentrations of secondary metabolites, which are potent antioxidant compounds.
  12. Ghasemzadeh A, Jaafar HZ, Karimi E, Ashkani S
    Molecules, 2014 Oct 16;19(10):16693-706.
    PMID: 25325154 DOI: 10.3390/molecules191016693
    The increase of atmospheric CO2 due to global climate change or horticultural practices has direct and indirect effects on food crop quality. One question that needs to be asked, is whether CO2 enrichment affects the nutritional quality of Malaysian young ginger plants. Responses of total carbohydrate, fructose, glucose, sucrose, protein, soluble amino acids and antinutrients to either ambient (400 μmol/mol) and elevated (800 μmol/mol) CO2 treatments were determined in the leaf and rhizome of two ginger varieties namely Halia Bentong and Halia Bara. Increasing of CO2 level from ambient to elevated resulted in increased content of total carbohydrate, sucrose, glucose, and fructose in the leaf and rhizome of ginger varieties. Sucrose was the major sugar followed by glucose and fructose in the leaf and rhizome extract of both varieties. Elevated CO2 resulted in a reduction of total protein content in the leaf (H. Bentong: 38.0%; H. Bara: 35.4%) and rhizome (H. Bentong: 29.0%; H. Bara: 46.2%). In addition, under CO2 enrichment, the concentration of amino acids increased by approximately 14.5% and 98.9% in H. Bentong and 12.0% and 110.3% in H. Bara leaf and rhizome, respectively. The antinutrient contents (cyanide and tannin) except phytic acid were influenced significantly (P ≤ 0.05) by CO2 concentration. Leaf extract of H. Bara exposed to elevated CO2 exhibited highest content of cyanide (336.1 mg HCN/kg DW), while, highest content of tannin (27.5 g/kg DW) and phytic acid (54.1 g/kg DW) were recorded from H.Bara rhizome grown under elevated CO2. These results demonstrate that the CO2 enrichment technique could improve content of some amino acids and antinutrients of ginger as a food crop by enhancing its nutritional and health-promoting properties.
  13. Ghasemzadeh A, Jaafar HZ, Karimi E, Rahmat A
    PMID: 25169626 DOI: 10.1186/1472-6882-14-318
    Extraction prior to component analysis is the primary step in the recovery and isolation of bioactive phytochemicals from plant materials.
  14. Ghasemzadeh A, Jaafar HZ
    ScientificWorldJournal, 2014;2014:523120.
    PMID: 25147852 DOI: 10.1155/2014/523120
    Response surface methodology was applied to optimization of the conditions for reflux extraction of Pandan (Pandanus amaryllifolius Roxb.) in order to achieve a high content of total flavonoids (TF), total phenolics (TP), and high antioxidant capacity (AC) in the extracts. Central composite experimental design with three factors and three levels was employed to consider the effects of the operation parameters, including the methanol concentration (MC, 40%-80%), extraction temperature (ET, 40-70°C), and liquid-to-solid ratio (LS ratio, 20-40 mL/g) on the properties of the extracts. Response surface plots showed that increasing these operation parameters induced the responses significantly. The TF content and AC could be maximized when the extraction conditions (MC, ET, and LS ratio) were 78.8%, 69.5°C, and 32.4 mL/g, respectively, whereas the TP content was optimal when these variables were 75.1%, 70°C, and 31.8 mL/g, respectively. Under these optimum conditions, the experimental TF and TP content and AC were 1.78, 6.601 mg/g DW, and 87.38%, respectively. The optimized model was validated by a comparison of the predicted and experimental values. The experimental values were found to be in agreement with the predicted values, indicating the suitability of the model for optimizing the conditions for the reflux extraction of Pandan.
  15. Ghasemzadeh A, Jaafar HZ, Rahmat A, Devarajan T
    PMID: 24693327 DOI: 10.1155/2014/873803
    In this study, we investigated some bioactive compounds and pharmaceutical qualities of curry leaf (Murraya koenigii L.) extracts from three different locations in Malaysia. The highest TF and total phenolic (TP) contents were observed in the extracts from Kelantan (3.771 and 14.371 mg/g DW), followed by Selangor (3.146 and 12.272 mg/g DW) and Johor (2.801 and 12.02 mg/g DW), respectively. High quercetin (0.350 mg/g DW), catechin (0.325 mg/g DW), epicatechin (0.678 mg/g DW), naringin (0.203 mg/g DW), and myricetin (0.703 mg/g DW) levels were observed in the extracts from Kelantan, while the highest rutin content (0.082 mg/g DW) was detected in the leaves from Selangor. The curry leaf extract from Kelantan exhibited higher concentration of gallic acid (0.933 mg/g DW) than that from Selangor (0.904 mg/g DW) and Johor (0.813 mg/g DW). Among the studied samples, the ones from Kelantan exhibited the highest radical scavenging activity (DPPH, 66.41%) and ferric reduction activity potential (FRAP, 644.25  μ m of Fe(II)/g) followed by those from Selangor (60.237% and 598.37  μ m of Fe(II)/g) and Johor (50.76% and 563.42  μ m of Fe(II)/g), respectively. A preliminary screening showed that the curry leaf extracts from all the locations exhibited significant anticarcinogenic effects inhibiting the growth of breast cancer cell line (MDA-MB-231) and maximum inhibition of MDA-MB-231 cell was observed with the curry leaf extract from Kelantan. Based on these results, it is concluded that Malaysian curry leaf collected from the North (Kelantan) might be potential source of potent natural antioxidant and beneficial chemopreventive agents.
  16. Ghasemzadeh A, Jaafar HZ
    PMID: 24289290 DOI: 10.1186/1472-6882-13-341
    Phytochemicals and antioxidants from plant sources are of increasing interest to consumers because of their roles in the maintenance of human health. Most of the secondary metabolites of herbs are used in a number of pharmaceutical products.
  17. Ghasemzadeh A, Jaafar HZ
    Molecules, 2013 May 21;18(5):5965-79.
    PMID: 23698049 DOI: 10.3390/molecules18055965
    The effect of foliar salicylic acid (SA) applications (10⁻³ and 10⁻⁵ M) on activities of nitrate reductase, guaiacol peroxidase (POD), superoxide dismutases (SOD), catalase (CAT) and proline enzymes and physiological parameters was evaluated in two ginger varieties (Halia Bentong and Halia Bara) under greenhouse conditions. In both varieties, tested treatments generally enhanced photosynthetic rate and total dry weight. Photosynthetic rate increases were generally accompanied by increased or unchanged stomatal conductance levels, although intercellular CO₂ concentrations of treated plants were typically lower than in controls. Lower SA concentrations were generally more effective in enhancing photosynthetic rate and plant growth. Exogenous application of SA increased antioxidant enzyme activities and proline content; the greatest responses were obtained in plants sprayed with 10⁻⁵ M SA, with significant increases observed in CAT (20.1%), POD (45.2%), SOD (44.1%) and proline (43.1%) activities. Increased CAT activity in leaves is naturally expected to increase photosynthetic efficiency and thus net photosynthesis by maintaining a constant CO₂ supply. Our results support the idea that low SA concentrations (10⁻⁵ M) may induce nitrite reductase synthesis by mobilizing intracellular NO³⁻ and can provide protection to nitrite reductase degradation in vivo in the absence of NO³⁻. Observed positive correlations among proline, SOD, CAT and POD activities in the studied varieties suggest that increased SOD activity was accompanied by increases in CAT and POD activities because of the high demands of H₂O₂ quenching.
  18. Ghasemzadeh A, Jaafar HZ
    Int J Mol Sci, 2011 Feb 10;12(2):1101-14.
    PMID: 21541046 DOI: 10.3390/ijms12021101
    The effect of two different CO(2) concentrations (400 and 800 μmol mol(-1)) on the photosynthesis rate, primary and secondary metabolite syntheses and the antioxidant activities of the leaves, stems and rhizomes of two Zingiber officinale varieties (Halia Bentong and Halia Bara) were assessed in an effort to compare and validate the medicinal potential of the subterranean part of the young ginger. High photosynthesis rate (10.05 μmol CO(2) m(-2)s(-1) in Halia Bara) and plant biomass (83.4 g in Halia Bentong) were observed at 800 μmol mol(-1) CO(2). Stomatal conductance decreased and water use efficiency increased with elevated CO(2) concentration. Total flavonoids (TF), total phenolics (TP), total soluble carbohydrates (TSC), starch and plant biomass increased significantly (P ≤ 0.05) in all parts of the ginger varieties under elevated CO(2) (800 μmol mol(-1)). The order of the TF and TP increment in the parts of the plant was rhizomes > stems > leaves. More specifically, Halia Bara had a greater increase of TF (2.05 mg/g dry weight) and TP (14.31 mg/g dry weight) compared to Halia Bentong (TF: 1.42 mg/g dry weight; TP: 9.11 mg/g dry weight) in average over the whole plant. Furthermore, plants with the highest rate of photosynthesis had the highest TSC and phenolics content. Significant differences between treatments and species were observed for TF and TP production. Correlation coefficient showed that TSC and TP content are positively correlated in both varieties. The antioxidant activity, as determined by the ferric reducing/antioxidant potential (FRAP) activity, increased in young ginger grown under elevated CO(2). The FRAP values for the leaves, rhizomes and stems extracts of both varieties grown under two different CO(2) concentrations (400 and 800 μmol mol(-1)) were significantly lower than those of vitamin C (3107.28 μmol Fe (II)/g) and α-tocopherol (953 μmol Fe (II)/g), but higher than that of BHT (74.31 μmol Fe (II)/g). These results indicate that the plant biomass, primary and secondary metabolite synthesis, and following that, antioxidant activities of Malaysian young ginger varieties can be enhanced through controlled environment (CE) and CO(2) enrichment.
  19. Ghasemzadeh A, Jaafar HZ, Rahmat A
    Molecules, 2010 Sep;15(9):6231-43.
    PMID: 20877219 DOI: 10.3390/molecules15096231
    Flavonoids make up one of the most pervasive groups of plant phenolics. Due to their importance in plants and human health, it would be useful to have a better understanding of flavonoid concentration and biological activities that could indicate their potentials as therapeutic agents, and also for predicting and controlling the quality of medicinal herbs. Ginger (Zingiber officinale Roscoe) is a famous and widely used herb, especially in Asia, that contains several interesting bioactive constituents and possesses health promoting properties. In this study, total flavonoids and some flavonoid components including quercetin, rutin, catechin, epicatechin, kaempferol and naringenin were extracted from the leaves and rhizomes of two varieties of Zingiber officinale (Halia Bentong and Halia Bara) at three different growth points (8, 12 and 16 weeks after planting), and analyzed by a high performance liquid chromatography (HPLC) method in order to determine the potential of the subterranean part of the young ginger. The results showed that Halia Bara had a higher content of flavonoids in the leaves and rhizomes as compared to Halia Bentong. In both varieties, the concentration of flavonoids in the leaves decreased (Halia Bentong, 42.3%; Halia Bara 36.7%), and in the rhizomes it increased (Halia Bentong 59.6%; Halia Bara 60.1%) as the growth period increased. Quercetin was abundant in both varieties. The antioxidant activity determined by the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assay showed high activities (65.7%) in the leaves of Halia Bara at 8 weeks after planting. Results suggested a good flavonoid content and antioxidant activity potential in ginger leaves at 8 weeks after planting. The leaves of these ginger varieties could be useful for both food flavourings and in traditional medicine.
  20. Ghasemzadeh A, Jaafar HZ, Rahmat A, Wahab PE, Halim MR
    Int J Mol Sci, 2010;11(10):3885-97.
    PMID: 21152306 DOI: 10.3390/ijms11103885
    Nowadays, phytochemicals and antioxidants in plants are raising interest in consumers for their roles in the maintenance of human health. Phenolics and flavonoids are known for their health-promoting properties due to protective effects against cardiovascular disease, cancers and other disease. Ginger (Zingiber officinale) is one of the traditional folk medicinal plants and it is widely used in cooking in Malaysia. In this study, four levels of glasshouse light intensities (310, 460, 630 and 790 μmol m(-2)s(-1)) were used in order to consider the effect of light intensity on the production, accumulation and partitioning of total phenolics (TP), total flavonoids (TF) and antioxidant activities in two varieties of Malaysian young ginger (Zingiber officinale). TF biosynthesis was highest in the Halia Bara variety under 310 μmol m(-2)s(-1) and TP was high in this variety under a light intensity of 790 μmol m(-2)s(-1). The highest amount of these components accumulated in the leaves and after that in the rhizomes. Also, antioxidant activities determined by the 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) assay in both of varieties, increased significantly (p ≤ 0.01) with increasing TF concentration, and high antioxidant activity was observed in the leaves of Halia Bara grown under 310 μmol m(-2)s(-1). The ferric reducing (FRAP) activity of the rhizomes was higher than that of the leaves in 310 μmol m(-2)s(-1) of sun light. This study indicates the ability of different light intensities to enhance the medicinal components and antioxidant activities of the leaves and young rhizomes of Zingiber officinale varieties. Additionally, this study also validated their medicinal potential based on TF and TP contents.
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links