Displaying publications 1 - 20 of 46 in total

Abstract:
Sort:
  1. Grigg MJ, William T, Drakeley CJ, Jelip J, von Seidlein L, Barber BE, et al.
    BMJ Open, 2014 Aug 22;4(8):e006004.
    PMID: 25149186 DOI: 10.1136/bmjopen-2014-006004
    INTRODUCTION: Plasmodium knowlesi has long been present in Malaysia, and is now an emerging cause of zoonotic human malaria. Cases have been confirmed throughout South-East Asia where the ranges of its natural macaque hosts and Anopheles leucosphyrus group vectors overlap. The majority of cases are from Eastern Malaysia, with increasing total public health notifications despite a concurrent reduction in Plasmodium falciparum and P. vivax malaria. The public health implications are concerning given P. knowlesi has the highest risk of severe and fatal disease of all Plasmodium spp in Malaysia. Current patterns of risk and disease vary based on vector type and competence, with individual exposure risks related to forest and forest-edge activities still poorly defined. Clustering of cases has not yet been systematically evaluated despite reports of peri-domestic transmission and known vector competence for human-to-human transmission.

    METHODS AND ANALYSIS: A population-based case-control study will be conducted over a 2-year period at two adjacent districts in north-west Sabah, Malaysia. Confirmed malaria cases presenting to the district hospital sites meeting relevant inclusion criteria will be requested to enrol. Three community controls matched to the same village as the case will be selected randomly. Study procedures will include blood sampling and administration of household and individual questionnaires to evaluate potential exposure risks associated with acquisition of P. knowlesi malaria. Secondary outcomes will include differences in exposure variables between P. knowlesi and other Plasmodium spp, risk of severe P. knowlesi malaria, and evaluation of P. knowlesi case clustering. Primary analysis will be per protocol, with adjusted ORs for exposure risks between cases and controls calculated using conditional multiple logistic regression models.

    ETHICS: This study has been approved by the human research ethics committees of Malaysia, the Menzies School of Health Research, Australia, and the London School of Hygiene and Tropical Medicine, UK.

  2. Cooper DJ, Rajahram GS, William T, Jelip J, Mohammad R, Benedict J, et al.
    Clin Infect Dis, 2020 01 16;70(3):361-367.
    PMID: 30889244 DOI: 10.1093/cid/ciz237
    BACKGROUND: Malaysia aims to eliminate malaria by 2020. However, while cases of Plasmodium falciparum and Plasmodium vivax have decreased substantially, the incidence of zoonotic malaria from Plasmodium knowlesi continues to increase, presenting a major challenge to regional malaria control efforts. Here we report incidence of all Plasmodium species in Sabah, including zoonotic P. knowlesi, during 2015-2017.

    METHODS: Microscopy-based malaria notification data and polymerase chain reaction (PCR) results were obtained from the Sabah Department of Health and State Public Health Laboratory, respectively, from January 2015 to December 2017. From January 2016 this was complemented by a statewide prospective hospital surveillance study. Databases were matched, and species was determined by PCR, or microscopy if PCR was not available.

    RESULTS: A total of 3867 malaria cases were recorded between 2015 and 2017, with PCR performed in 93%. Using PCR results, and microscopy if PCR was unavailable, P. knowlesi accounted for 817 (80%), 677 (88%), and 2030 (98%) malaria cases in 2015, 2016, and 2017, respectively. P. falciparum accounted for 110 (11%), 45 (6%), and 23 (1%) cases and P. vivax accounted for 61 (6%), 17 (2%), and 8 (0.4%) cases, respectively. Of those with P. knowlesi, the median age was 35 (interquartile range: 24-47) years, and 85% were male.

    CONCLUSIONS: Malaysia is approaching elimination of the human-only Plasmodium species. However, the ongoing increase in P. knowlesi incidence presents a major challenge to malaria control and warrants increased focus on knowlesi-specific prevention activities. Wider molecular surveillance in surrounding countries is required.

  3. William T, Menon J, Rajahram G, Chan L, Ma G, Donaldson S, et al.
    Emerg Infect Dis, 2011 Jul;17(7):1248-55.
    PMID: 21762579 DOI: 10.3201/eid1707.101017
    The simian parasite Plasmodium knowlesi causes severe human malaria; the optimal treatment remains unknown. We describe the clinical features, disease spectrum, and response to antimalarial chemotherapy, including artemether-lumefantrine and artesunate, in patients with P. knowlesi malaria diagnosed by PCR during December 2007-November 2009 at a tertiary care hospital in Sabah, Malaysia. Fifty-six patients had PCR-confirmed P. knowlesi monoinfection and clinical records available for review. Twenty-two (39%) had severe malaria; of these, 6 (27%) died. Thirteen (59%) had respiratory distress; 12 (55%), acute renal failure; and 12, shock. None experienced coma. Patients with uncomplicated disease received chloroquine, quinine, or artemether-lumefantrine, and those with severe disease received intravenous quinine or artesunate. Parasite clearance times were 1-2 days shorter with either artemether-lumefantrine or artesunate treatment. P. knowlesi is a major cause of severe and fatal malaria in Sabah. Artemisinin derivatives rapidly clear parasitemia and are efficacious in treating uncomplicated and severe knowlesi malaria.
  4. Yusof R, Ahmed MA, Jelip J, Ngian HU, Mustakim S, Hussin HM, et al.
    Emerg Infect Dis, 2016 Aug;22(8):1371-80.
    PMID: 27433965 DOI: 10.3201/eid2208.151885
    Infections of humans with the zoonotic simian malaria parasite Plasmodium knowlesi occur throughout Southeast Asia, although most cases have occurred in Malaysia, where P. knowlesi is now the dominant malaria species. This apparently skewed distribution prompted an investigation of the phylogeography of this parasite in 2 geographically separated regions of Malaysia, Peninsular Malaysia and Malaysian Borneo. We investigated samples collected from humans and macaques in these regions. Haplotype network analyses of sequences from 2 P. knowlesi genes, type A small subunit ribosomal 18S RNA and cytochrome c oxidase subunit I, showed 2 genetically distinct divergent clusters, 1 from each of the 2 regions of Malaysia. We propose that these parasites represent 2 distinct P. knowlesi types that independently became zoonotic. These types would have evolved after the sea-level rise at the end of the last ice age, which separated Malaysian Borneo from Peninsular Malaysia.
  5. Phang WK, Hamid MHBA, Jelip J, Mudin RNB, Chuang TW, Lau YL, et al.
    Front Microbiol, 2023;14:1126418.
    PMID: 36876062 DOI: 10.3389/fmicb.2023.1126418
    The emergence of potentially life-threatening zoonotic malaria caused by Plasmodium knowlesi nearly two decades ago has continued to challenge Malaysia healthcare. With a total of 376 P. knowlesi infections notified in 2008, the number increased to 2,609 cases in 2020 nationwide. Numerous studies have been conducted in Malaysian Borneo to determine the association between environmental factors and knowlesi malaria transmission. However, there is still a lack of understanding of the environmental influence on knowlesi malaria transmission in Peninsular Malaysia. Therefore, our study aimed to investigate the ecological distribution of human P. knowlesi malaria in relation to environmental factors in Peninsular Malaysia. A total of 2,873 records of human P. knowlesi infections in Peninsular Malaysia from 1st January 2011 to 31st December 2019 were collated from the Ministry of Health Malaysia and geolocated. Three machine learning-based models, maximum entropy (MaxEnt), extreme gradient boosting (XGBoost), and ensemble modeling approach, were applied to predict the spatial variation of P. knowlesi disease risk. Multiple environmental parameters including climate factors, landscape characteristics, and anthropogenic factors were included as predictors in both predictive models. Subsequently, an ensemble model was developed based on the output of both MaxEnt and XGBoost. Comparison between models indicated that the XGBoost has higher performance as compared to MaxEnt and ensemble model, with AUCROC values of 0.933 ± 0.002 and 0.854 ± 0.007 for train and test datasets, respectively. Key environmental covariates affecting human P. knowlesi occurrence were distance to the coastline, elevation, tree cover, annual precipitation, tree loss, and distance to the forest. Our models indicated that the disease risk areas were mainly distributed in low elevation (75-345 m above mean sea level) areas along the Titiwangsa mountain range and inland central-northern region of Peninsular Malaysia. The high-resolution risk map of human knowlesi malaria constructed in this study can be further utilized for multi-pronged interventions targeting community at-risk, macaque populations, and mosquito vectors.
  6. Phang WK, Hamid MHBA, Jelip J, Mudin RNB, Chuang TW, Lau YL, et al.
    Front Microbiol, 2023;14:1178864.
    PMID: 37007492 DOI: 10.3389/fmicb.2023.1178864
    [This corrects the article DOI: 10.3389/fmicb.2023.1126418.].
  7. Md Iderus NH, Singh SSL, Ghazali SM, Zulkifli AA, Ghazali NAM, Lim MC, et al.
    Front Public Health, 2023;11:1213514.
    PMID: 37693699 DOI: 10.3389/fpubh.2023.1213514
    BACKGROUND: Globally, the COVID-19 pandemic has affected the transmission dynamics and distribution of dengue. Therefore, this study aims to describe the impact of the COVID-19 pandemic on the geographic and demographic distribution of dengue incidence in Malaysia.

    METHODS: This study analyzed dengue cases from January 2014 to December 2021 and COVID-19 confirmed cases from January 2020 to December 2021 which was divided into the pre (2014 to 2019) and during COVID-19 pandemic (2020 to 2021) phases. The average annual dengue case incidence for geographical and demographic subgroups were calculated and compared between the pre and during the COVID-19 pandemic phases. In addition, Spearman rank correlation was performed to determine the correlation between weekly dengue and COVID-19 cases during the COVID-19 pandemic phase.

    RESULTS: Dengue trends in Malaysia showed a 4-year cyclical trend with dengue case incidence peaking in 2015 and 2019 and subsequently decreasing in the following years. Reductions of 44.0% in average dengue cases during the COVID-19 pandemic compared to the pre-pandemic phase was observed at the national level. Higher dengue cases were reported among males, individuals aged 20-34 years, and Malaysians across both phases. Weekly dengue cases were significantly correlated (ρ = -0.901) with COVID-19 cases during the COVID-19 pandemic.

    CONCLUSION: There was a reduction in dengue incidence during the COVID-19 pandemic compared to the pre-pandemic phase. Significant reductions were observed across all demographic groups except for the older population (>75 years) across the two phases.

  8. Phang WK, Hamid MHA, Jelip J, Mudin RN, Chuang TW, Lau YL, et al.
    PMID: 33322414 DOI: 10.3390/ijerph17249271
    The life-threatening zoonotic malaria cases caused by Plasmodium knowlesi in Malaysia has recently been reported to be the highest among all malaria cases; however, previous studies have mainly focused on the transmission of P. knowlesi in Malaysian Borneo (East Malaysia). This study aimed to describe the transmission patterns of P. knowlesi infection in Peninsular Malaysia (West Malaysia). The spatial distribution of P. knowlesi was mapped across Peninsular Malaysia using Geographic Information System techniques. Local indicators of spatial associations were used to evaluate spatial patterns of P. knowlesi incidence. Seasonal autoregressive integrated moving average models were utilized to analyze the monthly incidence of knowlesi malaria in the hotspot region from 2012 to 2017 and to forecast subsequent incidence in 2018. Spatial analysis revealed that hotspots were clustered in the central-northern region of Peninsular Malaysia. Time series analysis revealed the strong seasonality of transmission from January to March. This study provides fundamental information on the spatial distribution and temporal dynamic of P. knowlesi in Peninsular Malaysia from 2011 to 2018. Current control policy should consider different strategies to prevent the transmission of both human and zoonotic malaria, particularly in the hotspot region, to ensure a successful elimination of malaria in the future.
  9. Fong MY, Lau YL, Jelip J, Ooi CH, Cheong FW
    J Genet, 2019 Sep;98.
    PMID: 31544794
    Plasmodium knowlesi contributes to the majority of human malaria incidences in Malaysia. Its uncontrollable passage among the natural monkey hosts can potentially lead to zoonotic outbreaks. The merozoite of this parasite invades host erythrocytes through interaction between its erythrocyte-binding proteins (EBPs) and their respective receptor on the erythrocytes. The regionII of P. knowlesi EBP, P. knowlesi beta (PkβII) protein is found to be mediating merozoite invasion into monkey erythrocytes by interacting with sialic acid receptors. Hence, the objective of this study was to investigate the genetic diversity, natural selection and haplotype grouping of PkβII of P. knowlesi isolates in Malaysia. Polymerase chain reaction amplifications of PkβII were performed on archived blood samples from Malaysia and 64 PkβII sequences were obtained. Sequence analysis revealed length polymorphism, and its amino acids at critical residues indicate the ability of PkβII to mediate P. knowlesi invasion into monkey erythrocytes. Low genetic diversity (π = 0.007) was observed in the PkβII of Malaysia Borneo compared to Peninsular Malaysia (π = 0.015). The PkβII was found to be under strong purifying selection to retain infectivity in monkeys and it plays a limited role in the zoonotic potential of P. knowlesi. Its haplotypes could be clustered into Peninsular Malaysia and Malaysia Borneo groups, indicating the existence of two distinct P. knowlesi parasites in Malaysia as reported in an earlier study.
  10. Chin AZ, Maluda MCM, Jelip J, Jeffree MSB, Culleton R, Ahmed K
    J Physiol Anthropol, 2020 Nov 23;39(1):36.
    PMID: 33228775 DOI: 10.1186/s40101-020-00247-5
    BACKGROUND: Malaria is a major public-health problem, with over 40% of the world's population (more than 3.3 billion people) at risk from the disease. Malaysia has committed to eliminate indigenous human malaria transmission by 2020. The objective of this descriptive study is to understand the epidemiology of malaria in Malaysia from 2000 through 2018 and to highlight the threat posed by zoonotic malaria to the National Malaria Elimination Strategic Plan.

    METHODS: Malaria is a notifiable infection in Malaysia. The data used in this study were extracted from the Disease Control Division, Ministry of Health Malaysia, contributed by the hospitals and health clinics throughout Malaysia. The population data used in this study was extracted from the Department of Statistics Malaysia. Data analyses were performed using Microsoft Excel. Data used for mapping are available at EPSG:4326 WGS84 CRS (Coordinate Reference System). Shapefile was obtained from igismap. Mapping and plotting of the map were performed using QGIS.

    RESULTS: Between 2000 and 2007, human malaria contributed 100% of reported malaria and 18-46 deaths per year in Malaysia. Between 2008 and 2017, indigenous malaria cases decreased from 6071 to 85 (98.6% reduction), while during the same period, zoonotic Plasmodium knowlesi cases increased from 376 to 3614 cases (an 861% increase). The year 2018 marked the first year that Malaysia did not report any indigenous cases of malaria caused by human malaria parasites. However, there was an increasing trend of P. knowlesi cases, with a total of 4131 cases reported in that year. Although the increased incidence of P. knowlesi cases can be attributed to various factors including improved diagnostic capacity, reduction in human malaria cases, and increase in awareness of P. knowlesi, more than 50% of P. knowlesi cases were associated with agriculture and plantation activities, with a large remainder proportion linked to forest-related activities.

    CONCLUSIONS: Malaysia has entered the elimination phase of malaria control. Zoonotic malaria, however, is increasing exponentially and becoming a significant public health problem. Improved inter-sectoral collaboration is required in order to develop a more integrated effort to control zoonotic malaria. Local political commitment and the provision of technical support from the World Health Organization will help to create focused and concerted efforts towards ensuring the success of the National Malaria Elimination Strategic Plan.

  11. William T, Jelip J, Menon J, Anderios F, Mohammad R, Awang Mohammad TA, et al.
    Malar J, 2014;13:390.
    PMID: 25272973 DOI: 10.1186/1475-2875-13-390
    While Malaysia has had great success in controlling Plasmodium falciparum and Plasmodium vivax, notifications of Plasmodium malariae and the microscopically near-identical Plasmodium knowlesi increased substantially over the past decade. However, whether this represents microscopic misdiagnosis or increased recognition of P. knowlesi has remained uncertain.
  12. Yusof R, Lau YL, Mahmud R, Fong MY, Jelip J, Ngian HU, et al.
    Malar J, 2014;13:168.
    PMID: 24886266 DOI: 10.1186/1475-2875-13-168
    Plasmodium knowlesi is a simian parasite that has been recognized as the fifth species causing human malaria. Naturally-acquired P. knowlesi infection is widespread among human populations in Southeast Asia. The aim of this epidemiological study was to determine the incidence and distribution of malaria parasites, with a particular focus on human P. knowlesi infection in Malaysia.
  13. Sanders KC, Rundi C, Jelip J, Rashman Y, Smith Gueye C, Gosling RD
    Malar J, 2014;13:24.
    PMID: 24443824 DOI: 10.1186/1475-2875-13-24
    Countries in the Asia Pacific region have made great progress in the fight against malaria; several are rapidly approaching elimination. However, malaria control programmes operating in elimination settings face substantial challenges, particularly around mobile migrant populations, access to remote areas and the diversity of vectors with varying biting and breeding behaviours. These challenges can be addressed through subnational collaborations with commercial partners, such as mining or plantation companies, that can conduct or support malaria control activities to cover employees. Such partnerships can be a useful tool for accessing high-risk populations and supporting malaria elimination goals.
  14. Abdullah NR, Norahmad NA, Jelip J, Sulaiman LH, Mohd Sidek H, Ismail Z, et al.
    Malar J, 2013;12:198.
    PMID: 23758930 DOI: 10.1186/1475-2875-12-198
    Sulphadoxine-pyrimethamine (SP) has been in use for the treatment of uncomplicated falciparum malaria in Malaysia since the 1970s and is still widely employed in spite of widespread clinical resistance. Resistance to SP is known to be mediated by mutations in the pfdhfr and pfdhps genes. The aim of the present study was to investigate the distribution of pfdhfr and pfdhps gene polymorphism in Plasmodium falciparum field isolates from Kalabakan, Sabah, in northern Borneo.
  15. Sastu UR, Abdullah NR, Norahmad NA, Saat MN, Muniandy PK, Jelip J, et al.
    Malar J, 2016;15:63.
    PMID: 26850038 DOI: 10.1186/s12936-016-1109-9
    Malaria cases persist in some remote areas in Sabah and Sarawak despite the ongoing and largely successful malaria control programme conducted by the Vector Borne Disease Control Programme, Ministry Of Health, Malaysia. Point mutations in the genes that encode the two enzymes involved in the folate biosynthesis pathway, dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) enzymes confer resistance to pyrimethamine and sulfadoxine respectively, in both Plasmodium falciparum and P. vivax. The aim of the current study was to determine the mutation on both pvdhfr at codon 13, 33, 57, 58, 61, 117, and 173 and pvdhps genes at codon 383 and 553, which are potentially associated with resistance to pyrimethamine and sulfadoxine in P. vivax samples in Sabah.
  16. Nuin NA, Tan AF, Lew YL, Piera KA, William T, Rajahram GS, et al.
    Malar J, 2020 Aug 27;19(1):306.
    PMID: 32854695 DOI: 10.1186/s12936-020-03379-2
    BACKGROUND: The monkey parasite Plasmodium knowlesi is an emerging public health issue in Southeast Asia. In Sabah, Malaysia, P. knowlesi is now the dominant cause of human malaria. Molecular detection methods for P. knowlesi are essential for accurate diagnosis and in monitoring progress towards malaria elimination of other Plasmodium species. However, recent commercially available PCR malaria kits have unpublished P. knowlesi gene targets or have not been evaluated against clinical samples.

    METHODS: Two real-time PCR methods currently used in Sabah for confirmatory malaria diagnosis and surveillance reporting were evaluated: the QuantiFast™ Multiplex PCR kit (Qiagen, Germany) targeting the P. knowlesi 18S SSU rRNA; and the abTES™ Malaria 5 qPCR II kit (AITbiotech, Singapore), with an undisclosed P. knowlesi gene target. Diagnostic accuracy was evaluated using 52 P. knowlesi, 25 Plasmodium vivax, 21 Plasmodium falciparum, and 10 Plasmodium malariae clinical isolates, and 26 malaria negative controls, and compared against a validated reference nested PCR assay. The limit of detection (LOD) for each PCR method and Plasmodium species was also evaluated.

    RESULTS: The sensitivity of the QuantiFast™ and abTES™ assays for detecting P. knowlesi was comparable at 98.1% (95% CI 89.7-100) and 100% (95% CI 93.2-100), respectively. Specificity of the QuantiFast™ and abTES™ for P. knowlesi was high at 98.8% (95% CI 93.4-100) for both assays. The QuantiFast™ assay demonstrated falsely-positive mixed Plasmodium species at low parasitaemias in both the primary and LOD analysis. Diagnostic accuracy of both PCR kits for detecting P. vivax, P. falciparum, and P. malariae was comparable to P. knowlesi. The abTES™ assay demonstrated a lower LOD for P. knowlesi of ≤ 0.125 parasites/µL compared to QuantiFast™ with a LOD of 20 parasites/µL. Hospital microscopy demonstrated a sensitivity of 78.8% (95% CI 65.3-88.9) and specificity of 80.4% (95% CI 67.6-89.8) compared to reference PCR for detecting P. knowlesi.

    CONCLUSION: The QuantiFast™ and abTES™ commercial PCR kits performed well for the accurate detection of P. knowlesi infections. Although the QuantiFast™ kit is cheaper, the abTES™ kit demonstrated a lower LOD, supporting its use as a second-line referral-laboratory diagnostic tool in Sabah, Malaysia.

  17. Hussin N, Lim YA, Goh PP, William T, Jelip J, Mudin RN
    Malar J, 2020 Jan 31;19(1):55.
    PMID: 32005228 DOI: 10.1186/s12936-020-3135-x
    BACKGROUND: To date, most of the recent publications on malaria in Malaysia were conducted in Sabah, East Malaysia focusing on the emergence of Plasmodium knowlesi. This analysis aims to describe the incidence, mortality and case fatality rate of malaria caused by all Plasmodium species between Peninsular Malaysia and East Malaysia (Sabah and Sarawak) over a 5-year period (2013-2017).

    METHODS: This is a secondary data review of all diagnosed and reported malaria confirmed cases notified to the Ministry of Health, Malaysia between January 2013 and December 2017.

    RESULTS: From 2013 to 2017, a total of 16,500 malaria cases were notified in Malaysia. The cases were mainly contributed from Sabah (7150; 43.3%) and Sarawak (5684; 34.4%). Majority of the patients were male (13,552; 82.1%). The most common age group in Peninsular Malaysia was 20 to 29 years (1286; 35.1%), while Sabah and Sarawak reported highest number of malaria cases in age group of 30 to 39 years (2776; 21.6%). The top two races with malaria in Sabah and Sarawak were Bumiputera Sabah (5613; 43.7%) and Bumiputera Sarawak (4512; 35.1%), whereas other ethnic group (1232; 33.6%) and Malays (1025; 28.0%) were the two most common races in Peninsular Malaysia. Plasmodium knowlesi was the commonest species in Sabah and Sarawak (9902; 77.1%), while there were more Plasmodium vivax cases (1548; 42.2%) in Peninsular Malaysia. The overall average incidence rate, mortality rate and case fatality rates for malaria from 2013 to 2017 in Malaysia were 0.106/1000, 0.030/100,000 and 0.27%, respectively. Sarawak reported the highest average incidence rate of 0.420/1000 population followed by Sabah (0.383/1000). Other states in Peninsular Malaysia reported below the national average incidence rate with less than 0.100/1000.

    CONCLUSIONS: There were different trends and characteristics of notified malaria cases in Peninsular Malaysia and Sabah and Sarawak. They provide useful information to modify current prevention and control measures so that they are customised to the peculiarities of disease patterns in the two regions in order to successfully achieve the pre-elimination of human-only species in the near future.

  18. Pramasivan S, Ngui R, Jeyaprakasam NK, Liew JWK, Low VL, Mohamed Hassan N, et al.
    Malar J, 2021 Oct 29;20(1):426.
    PMID: 34715864 DOI: 10.1186/s12936-021-03963-0
    BACKGROUND: Plasmodium knowlesi, a simian malaria parasite infection, increases as Plasmodium falciparum and Plasmodium vivax infections decrease in Johor, Malaysia. Therefore, this study aimed to identify the distribution of vectors involved in knowlesi malaria transmission in Johor. This finding is vital in estimating hotspot areas for targeted control strategies.

    METHODS: Anopheles mosquitoes were collected from the location where P. knowlesi cases were reported. Cases of knowlesi malaria from 2011 to 2019 in Johor were analyzed. Internal transcribed spacers 2 (ITS2) and cytochrome c oxidase subunit I (COI) genes were used to identify the Leucosphyrus Group of Anopheles mosquitoes. In addition, spatial analysis was carried out on the knowlesi cases and vectors in Johor.

    RESULTS: One hundred and eighty-nine cases of P. knowlesi were reported in Johor over 10 years. Young adults between the ages of 20-39 years comprised 65% of the cases. Most infected individuals were involved in agriculture and army-related occupations (22% and 32%, respectively). Four hundred and eighteen Leucosphyrus Group Anopheles mosquitoes were captured during the study. Anopheles introlatus was the predominant species, followed by Anopheles latens. Spatial analysis by Kriging interpolation found that hotspot regions of P. knowlesi overlapped or were close to the areas where An. introlatus and An. latens were found. A significantly high number of vectors and P. knowlesi cases were found near the road within 0-5 km.

    CONCLUSIONS: This study describes the distribution of P. knowlesi cases and Anopheles species in malaria-endemic transmission areas in Johor. Geospatial analysis is a valuable tool for studying the relationship between vectors and P. knowlesi cases. This study further supports that the Leucosphyrus Group of mosquitoes might be involved in transmitting knowlesi malaria cases in Johor. These findings may provide initial evidence to prioritize diseases and vector surveillance.

  19. Grigg MJ, William T, Piera KA, Rajahram GS, Jelip J, Aziz A, et al.
    Malar J, 2018 Dec 10;17(1):463.
    PMID: 30526613 DOI: 10.1186/s12936-018-2593-x
    BACKGROUND: Spreading Plasmodium falciparum artemisinin drug resistance threatens global malaria public health gains. Limited data exist to define the extent of P. falciparum artemisinin resistance southeast of the Greater Mekong region in Malaysia.

    METHODS: A clinical efficacy study of oral artesunate (total target dose 12 mg/kg) daily for 3 days was conducted in patients with uncomplicated falciparum malaria and a parasite count 

  20. Labadin J, Hong BH, Tiong WK, Gill BS, Perera D, Rigit ARH, et al.
    Multimed Tools Appl, 2023;82(11):17415-17436.
    PMID: 36404933 DOI: 10.1007/s11042-022-14120-3
    Traditionally, dengue is controlled by fogging, and the prime location for the control measure is at the patient's residence. However, when Malaysia was hit by the first wave of the Coronavirus disease (COVID-19), and the government-imposed movement control order, dengue cases have decreased by more than 30% from the previous year. This implies that residential areas may not be the prime locations for dengue-infected mosquitoes. The existing early warning system was focused on temporal prediction wherein the lack of consideration for spatial component at the microlevel and human mobility were not considered. Thus, we developed MozzHub, which is a web-based application system based on the bipartite network-based dengue model that is focused on identifying the source of dengue infection at a small spatial level (400 m) by integrating human mobility and environmental predictors. The model was earlier developed and validated; therefore, this study presents the design and implementation of the MozzHub system and the results of a preliminary pilot test and user acceptance of MozzHub in six district health offices in Malaysia. It was found that the MozzHub system is well received by the sample of end-users as it was demonstrated as a useful (77.4%), easy-to-operate system (80.6%), and has achieved adequate client satisfaction for its use (74.2%).
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links