Displaying publications 1 - 20 of 46 in total

Abstract:
Sort:
  1. Suleiman M, Muhammad J, Jelip J, William T, Chua TH
    PMID: 29644840
    The horseshoe crab (Carcinoscorpius rotundicauda) is consumed by those
    residing near the coastal areas of Kota Marudu District in Malaysia, as it is considered
    a delicacy. During June to August, 2011 thirty cases of tetrodotoxin poisoning
    were reported from Kota Marudu District following ingestion of horseshoe
    crabs caught in Kota Marudu Bay. The purpose of this study is to describe this
    case series in order to determine risk factors to prevent further outbreaks. There
    were six confirmed and 24 probable cases of tetrodotoxin poisoning identified in
    the study area during the study period as diagnosed by clinical presentation and
    laboratory findings. Symptoms included dizziness (80%), circumoral and lingual
    numbness (80%), hand and feet numbness (63.3%), nausea and vomiting (30%)
    and weakness and difficulty in breathing (26.6%). Three cases (10%) died while 27
    cases recovered. Forty-seven percent of the cases had onset of symptoms within
    30 minutes of ingestion and 14% 31-60 minutes after ingestion of horseshoe crab
    meat. Urine samples were collected from the cases, while horseshoe crabs, cockles
    and sea water from the epidemic area were also taken for analysis. Tetrodotoxin
    was detected in the urine of six cases; the highest concentrations recorded were
    among the three cases who died. High tetrodotoxin concentrations were found
    in the hepatic cecum and eggs of the tested horseshoe crabs. Dinoflagellates were
    not detected in the sea water or cockle samples. Intensive health education was
    initiated quickly to stop other members of the Marudu Bay community from
    consuming the horseshoe crabs. This is the first documented epidemic of tetrodotoxin
    poisoning in Sabah.
  2. Hawkes FM, Manin BO, Cooper A, Daim S, R H, Jelip J, et al.
    Sci Rep, 2019 Nov 20;9(1):17510.
    PMID: 31745193 DOI: 10.1038/s41598-019-53744-8
    An amendment to this paper has been published and can be accessed via a link at the top of the paper.
  3. Suleiman M, Jelip J, Rundi C, Chua TH
    Am J Trop Med Hyg, 2017 Dec;97(6):1731-1736.
    PMID: 29016314 DOI: 10.4269/ajtmh.17-0589
    During the months of January-February and May-June 2013 coinciding with the red tide occurrence in Kota Kinabalu, Sabah, Malaysia, six episodes involving 58 cases of paralytic shellfish poisoning (PSP) or saxitoxin (STX) poisoning and resulting in four deaths were reported. Many of them were intoxicated from consuming shellfish purchased from the markets, whereas others were intoxicated from eating shellfish collected from the beach. Levels of STX in shellfish collected from the affected areas were high (mean 2,920 ± 780 and 360 ± 140 µg STX equivalents/100 g shellfish meat respectively for the two periods). The count of toxic dinoflagellates (Pyrodinium bahamense var compressum) of the sea water sampled around the coast was also high (mean 34,200 ± 10,300 cells/L). Species of shellfish containing high levels of STX were Atrina fragilis, Perna viridis, and Crassostrea belcheri. The age of victims varied from 9 to 67 years. Symptoms presented were typical of PSP, such as dizziness, numbness, vomiting, and difficulty in breathing. Recommended steps to prevent or reduce PSP in future red tide season include better monitoring of red tide occurrence, regular sampling of shellfish for determination of STX level, wider dissemination of information on the danger of eating contaminated shellfish among the communities, fishermen, and fishmongers.
  4. William T, Jelip J, Menon J, Anderios F, Mohammad R, Awang Mohammad TA, et al.
    Malar J, 2014;13:390.
    PMID: 25272973 DOI: 10.1186/1475-2875-13-390
    While Malaysia has had great success in controlling Plasmodium falciparum and Plasmodium vivax, notifications of Plasmodium malariae and the microscopically near-identical Plasmodium knowlesi increased substantially over the past decade. However, whether this represents microscopic misdiagnosis or increased recognition of P. knowlesi has remained uncertain.
  5. Nuin NA, Tan AF, Lew YL, Piera KA, William T, Rajahram GS, et al.
    Malar J, 2020 Aug 27;19(1):306.
    PMID: 32854695 DOI: 10.1186/s12936-020-03379-2
    BACKGROUND: The monkey parasite Plasmodium knowlesi is an emerging public health issue in Southeast Asia. In Sabah, Malaysia, P. knowlesi is now the dominant cause of human malaria. Molecular detection methods for P. knowlesi are essential for accurate diagnosis and in monitoring progress towards malaria elimination of other Plasmodium species. However, recent commercially available PCR malaria kits have unpublished P. knowlesi gene targets or have not been evaluated against clinical samples.

    METHODS: Two real-time PCR methods currently used in Sabah for confirmatory malaria diagnosis and surveillance reporting were evaluated: the QuantiFast™ Multiplex PCR kit (Qiagen, Germany) targeting the P. knowlesi 18S SSU rRNA; and the abTES™ Malaria 5 qPCR II kit (AITbiotech, Singapore), with an undisclosed P. knowlesi gene target. Diagnostic accuracy was evaluated using 52 P. knowlesi, 25 Plasmodium vivax, 21 Plasmodium falciparum, and 10 Plasmodium malariae clinical isolates, and 26 malaria negative controls, and compared against a validated reference nested PCR assay. The limit of detection (LOD) for each PCR method and Plasmodium species was also evaluated.

    RESULTS: The sensitivity of the QuantiFast™ and abTES™ assays for detecting P. knowlesi was comparable at 98.1% (95% CI 89.7-100) and 100% (95% CI 93.2-100), respectively. Specificity of the QuantiFast™ and abTES™ for P. knowlesi was high at 98.8% (95% CI 93.4-100) for both assays. The QuantiFast™ assay demonstrated falsely-positive mixed Plasmodium species at low parasitaemias in both the primary and LOD analysis. Diagnostic accuracy of both PCR kits for detecting P. vivax, P. falciparum, and P. malariae was comparable to P. knowlesi. The abTES™ assay demonstrated a lower LOD for P. knowlesi of ≤ 0.125 parasites/µL compared to QuantiFast™ with a LOD of 20 parasites/µL. Hospital microscopy demonstrated a sensitivity of 78.8% (95% CI 65.3-88.9) and specificity of 80.4% (95% CI 67.6-89.8) compared to reference PCR for detecting P. knowlesi.

    CONCLUSION: The QuantiFast™ and abTES™ commercial PCR kits performed well for the accurate detection of P. knowlesi infections. Although the QuantiFast™ kit is cheaper, the abTES™ kit demonstrated a lower LOD, supporting its use as a second-line referral-laboratory diagnostic tool in Sabah, Malaysia.

  6. Phang WK, Hamid MHBA, Jelip J, Mudin RNB, Chuang TW, Lau YL, et al.
    Front Microbiol, 2023;14:1178864.
    PMID: 37007492 DOI: 10.3389/fmicb.2023.1178864
    [This corrects the article DOI: 10.3389/fmicb.2023.1126418.].
  7. Labadin J, Hong BH, Tiong WK, Gill BS, Perera D, Rigit ARH, et al.
    Multimed Tools Appl, 2023;82(11):17415-17436.
    PMID: 36404933 DOI: 10.1007/s11042-022-14120-3
    Traditionally, dengue is controlled by fogging, and the prime location for the control measure is at the patient's residence. However, when Malaysia was hit by the first wave of the Coronavirus disease (COVID-19), and the government-imposed movement control order, dengue cases have decreased by more than 30% from the previous year. This implies that residential areas may not be the prime locations for dengue-infected mosquitoes. The existing early warning system was focused on temporal prediction wherein the lack of consideration for spatial component at the microlevel and human mobility were not considered. Thus, we developed MozzHub, which is a web-based application system based on the bipartite network-based dengue model that is focused on identifying the source of dengue infection at a small spatial level (400 m) by integrating human mobility and environmental predictors. The model was earlier developed and validated; therefore, this study presents the design and implementation of the MozzHub system and the results of a preliminary pilot test and user acceptance of MozzHub in six district health offices in Malaysia. It was found that the MozzHub system is well received by the sample of end-users as it was demonstrated as a useful (77.4%), easy-to-operate system (80.6%), and has achieved adequate client satisfaction for its use (74.2%).
  8. Sanders KC, Rundi C, Jelip J, Rashman Y, Smith Gueye C, Gosling RD
    Malar J, 2014;13:24.
    PMID: 24443824 DOI: 10.1186/1475-2875-13-24
    Countries in the Asia Pacific region have made great progress in the fight against malaria; several are rapidly approaching elimination. However, malaria control programmes operating in elimination settings face substantial challenges, particularly around mobile migrant populations, access to remote areas and the diversity of vectors with varying biting and breeding behaviours. These challenges can be addressed through subnational collaborations with commercial partners, such as mining or plantation companies, that can conduct or support malaria control activities to cover employees. Such partnerships can be a useful tool for accessing high-risk populations and supporting malaria elimination goals.
  9. Jeyaprakasam NK, Pramasivan S, Liew JWK, Van Low L, Wan-Sulaiman WY, Ngui R, et al.
    Parasit Vectors, 2021 Apr 01;14(1):184.
    PMID: 33794965 DOI: 10.1186/s13071-021-04689-3
    BACKGROUND: Vector surveillance is essential in determining the geographical distribution of mosquito vectors and understanding the dynamics of malaria transmission. With the elimination of human malaria cases, knowlesi malaria cases in humans are increasing in Malaysia. This necessitates intensive vector studies using safer trapping methods which are both field efficient and able to attract the local vector populations. Thus, this study evaluated the potential of Mosquito Magnet as a collection tool for Anopheles mosquito vectors of simian malaria along with other known collection methods.

    METHODS: A randomized 4 × 4 Latin square designed experiment was conducted to compare the efficiency of the Mosquito Magnet against three other common trapping methods: human landing catch (HLC), CDC light trap and human baited trap (HBT). The experiment was conducted over six replicates where sampling within each replicate was carried out for 4 consecutive nights. An additional 4 nights of sampling was used to further evaluate the Mosquito Magnet against the "gold standard" HLC. The abundance of Anopheles sampled by different methods was compared and evaluated with focus on the Anopheles from the Leucosphyrus group, the vectors of knowlesi malaria.

    RESULTS: The Latin square designed experiment showed HLC caught the greatest number of Anopheles mosquitoes (n = 321) compared to the HBT (n = 87), Mosquito Magnet (n = 58) and CDC light trap (n = 13). The GLMM analysis showed that the HLC method caught significantly more Anopheles mosquitoes compared to Mosquito Magnet (P = 0.049). However, there was no significant difference in mean nightly catch of Anopheles mosquitoes between Mosquito Magnet and the other two trapping methods, HBT (P = 0.646) and CDC light traps (P = 0.197). The mean nightly catch for both An. introlatus (9.33 ± 4.341) and An. cracens (4.00 ± 2.273) caught using HLC was higher than that of Mosquito Magnet, though the differences were not statistically significant (P > 0.05). This is in contrast to the mean nightly catch of An. sinensis (15.75 ± 5.640) and An. maculatus (15.78 ± 3.479) where HLC showed significantly more mosquito catches compared to Mosquito Magnet (P 

  10. Stanis CS, Song BK, Chua TH, Lau YL, Jelip J
    Turk J Med Sci, 2016 Jan 05;46(1):207-18.
    PMID: 27511356 DOI: 10.3906/sag-1411-114
    BACKGROUND/AIM: Malaria is a major public health problem, especially in the Southeast Asia region, caused by 5 species of Plasmodium (P. falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi). The aim of this study was to compare parasite species identification methods using the new multiplex polymerase chain reaction (PCR) against nested PCR and microscopy.

    MATERIALS AND METHODS: Blood samples on filter papers were subject to conventional PCR methods using primers designed by us in multiplex PCR and previously designed primers of nested PCR. Both sets of results were compared with microscopic identification.

    RESULTS: Of the 129 samples identified as malaria-positive by microscopy, 15 samples were positive for P. falciparum, 14 for P. vivax, 6 for P. knowlesi, 72 for P. malariae, and 2 for mixed infection of P. falciparum/P. malariae. Both multiplex and nested PCR identified 12 P. falciparum single infections. For P. vivax, 9 were identified by multiplex and 12 by nested PCR. For 72 P. malariae cases, multiplex PCR identified 58 as P. knowlesi and 10 as P. malariae compared to nested PCR, which identified 59 as P. knowlesi and 7 as P. malariae.

    CONCLUSION: Multiplex PCR could be used as alternative molecular diagnosis for the identification of all Plasmodium species as it requires a shorter time to screen a large number of samples.

  11. Grigg MJ, William T, Drakeley CJ, Jelip J, von Seidlein L, Barber BE, et al.
    BMJ Open, 2014 Aug 22;4(8):e006004.
    PMID: 25149186 DOI: 10.1136/bmjopen-2014-006004
    INTRODUCTION: Plasmodium knowlesi has long been present in Malaysia, and is now an emerging cause of zoonotic human malaria. Cases have been confirmed throughout South-East Asia where the ranges of its natural macaque hosts and Anopheles leucosphyrus group vectors overlap. The majority of cases are from Eastern Malaysia, with increasing total public health notifications despite a concurrent reduction in Plasmodium falciparum and P. vivax malaria. The public health implications are concerning given P. knowlesi has the highest risk of severe and fatal disease of all Plasmodium spp in Malaysia. Current patterns of risk and disease vary based on vector type and competence, with individual exposure risks related to forest and forest-edge activities still poorly defined. Clustering of cases has not yet been systematically evaluated despite reports of peri-domestic transmission and known vector competence for human-to-human transmission.

    METHODS AND ANALYSIS: A population-based case-control study will be conducted over a 2-year period at two adjacent districts in north-west Sabah, Malaysia. Confirmed malaria cases presenting to the district hospital sites meeting relevant inclusion criteria will be requested to enrol. Three community controls matched to the same village as the case will be selected randomly. Study procedures will include blood sampling and administration of household and individual questionnaires to evaluate potential exposure risks associated with acquisition of P. knowlesi malaria. Secondary outcomes will include differences in exposure variables between P. knowlesi and other Plasmodium spp, risk of severe P. knowlesi malaria, and evaluation of P. knowlesi case clustering. Primary analysis will be per protocol, with adjusted ORs for exposure risks between cases and controls calculated using conditional multiple logistic regression models.

    ETHICS: This study has been approved by the human research ethics committees of Malaysia, the Menzies School of Health Research, Australia, and the London School of Hygiene and Tropical Medicine, UK.

  12. Mohd Abd Razak MR, Sastu UR, Norahmad NA, Abdul-Karim A, Muhammad A, Muniandy PK, et al.
    PLoS One, 2016;11(3):e0152415.
    PMID: 27023787 DOI: 10.1371/journal.pone.0152415
    Malaysia has a national goal to eliminate malaria by 2020. Understanding the genetic diversity of malaria parasites in residual transmission foci can provide invaluable information which may inform the intervention strategies used to reach elimination targets. This study was conducted to determine the genetic diversity level of P. falciparum isolates in malaria residual foci areas of Sabah. Malaria active case detection was conducted in Kalabakan and Kota Marudu. All individuals in the study sites were screened for malaria infection by rapid diagnostic test. Blood from P. falciparum-infected individuals were collected on filter paper prior to DNA extraction. Genotyping was performed using merozoite surface protein-1 (MSP-1), merozoite surface protein-2 (MSP-2), glutamate rich protein (GLURP) and 10 neutral microsatellite loci markers. The size of alleles, multiplicity of infection (MOI), mean number of alleles (Na), expected heterozygosity (He), linkage disequilibrium (LD) and genetic differentiation (FST) were determined. In Kalabakan, the MSP-1 and MSP-2 alleles were predominantly K1 and FC27 family types, respectively. The GLURP genotype VI (751-800 bp) was predominant. The MOI for MSP-1 and MSP-2 were 1.65 and 1.20, respectively. The Na per microsatellite locus was 1.70. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.17, 0.37, 0.70 and 0.33, respectively. In Kota Marudu, the MSP-1 and MSP-2 alleles were predominantly MAD20 and 3D7 family types, respectively. The GLURP genotype IV (651-700 bp) was predominant. The MOI for both MSP-1 and MSP-2 was 1.05. The Na per microsatellite locus was 3.60. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.24, 0.25, 0.69 and 0.30, respectively. A significant LD was observed in Kalabakan (0.495, p<0.01) and Kota Marudu P. falciparum populations (0.601, p<0.01). High genetic differentiation between Kalabakan and Kota Marudu P. falciparum populations was observed (FST = 0.532). The genetic data from the present study highlighted the limited diversity and contrasting genetic pattern of P. falciparum populations in the malaria declining areas of Sabah.
  13. Fong MY, Lau YL, Jelip J, Ooi CH, Cheong FW
    J Genet, 2019 Sep;98.
    PMID: 31544794
    Plasmodium knowlesi contributes to the majority of human malaria incidences in Malaysia. Its uncontrollable passage among the natural monkey hosts can potentially lead to zoonotic outbreaks. The merozoite of this parasite invades host erythrocytes through interaction between its erythrocyte-binding proteins (EBPs) and their respective receptor on the erythrocytes. The regionII of P. knowlesi EBP, P. knowlesi beta (PkβII) protein is found to be mediating merozoite invasion into monkey erythrocytes by interacting with sialic acid receptors. Hence, the objective of this study was to investigate the genetic diversity, natural selection and haplotype grouping of PkβII of P. knowlesi isolates in Malaysia. Polymerase chain reaction amplifications of PkβII were performed on archived blood samples from Malaysia and 64 PkβII sequences were obtained. Sequence analysis revealed length polymorphism, and its amino acids at critical residues indicate the ability of PkβII to mediate P. knowlesi invasion into monkey erythrocytes. Low genetic diversity (π = 0.007) was observed in the PkβII of Malaysia Borneo compared to Peninsular Malaysia (π = 0.015). The PkβII was found to be under strong purifying selection to retain infectivity in monkeys and it plays a limited role in the zoonotic potential of P. knowlesi. Its haplotypes could be clustered into Peninsular Malaysia and Malaysia Borneo groups, indicating the existence of two distinct P. knowlesi parasites in Malaysia as reported in an earlier study.
  14. Azlan UW, Lau YL, Hamid MHA, Jelip J, Ooi CH, Mudin RN, et al.
    Trop Biomed, 2022 Dec 01;39(4):504-510.
    PMID: 36602208 DOI: 10.47665/tb.39.4.006
    The Plasmodium knowlesi secreted protein with an altered thrombospondin repeat (PkSPATR) is an important protein that helps in the parasite's invasion into the host cell. This protein has been regarded as one of the potential vaccine candidates against P. knowlesi infection. This study investigates the genetic diversity and natural selection of PkSPATR gene of P. knowlesi clinical isolates from Malaysia. PCR amplification of the full length PkSPATR gene was performed on 60 blood samples of infected P. knowlesi patients from Peninsular Malaysia and Malaysian Borneo. The amplified PCR products were cloned and sequenced. Sequence analysis of PkSPATR from Malaysia showed higher nucleotide diversity (CDS p: 0.01462) than previously reported Plasmodium vivax PvSPATR (p = 0.0003). PkSPATR from Peninsular Malaysia was observed to have slightly higher diversity (CDS p: 0.01307) than those from Malaysian Borneo (CDS p: 0.01212). Natural selection analysis on PkSPATR indicated significant purifying selection. Multiple amino acid sequence alignment revealed 69 polymorphic sites. The phylogenetic tree and haplotype network did not show any distinct clustering of PkSPATR. The low genetic diversity level, natural selection and absence of clustering implied functional constrains of the PkSPATR protein.
  15. Ng YL, Lau YL, Hamid MHA, Jelip J, Ooi CH, Mudin RN, et al.
    Parasitol Res, 2023 Jan;122(1):195-200.
    PMID: 36378331 DOI: 10.1007/s00436-022-07716-z
    Plasmodium knowlesi is a simian malaria parasite that causes significant zoonotic infections in Southeast Asia, particularly in Malaysia. The Plasmodium thrombospondin-related apical merozoite protein (TRAMP) plays an essential role in the invasion of the parasite into its host erythrocyte. The present study investigated the genetic polymorphism and natural selection of the full length PkTRAMP from P. knowlesi clinical isolates from Malaysia. Blood samples (n = 40) were collected from P. knowlesi malaria patients from Peninsular Malaysia and Malaysian Borneo. The PkTRAMP gene was amplified using PCR, followed by cloning into a plasmid vector and sequenced. Results showed that the nucleotide diversity of PkTRAMP was low (π: 0.009). Z-test results indicated negative (purifying) selection of PkTRAMP. The alignment of the deduced amino acid sequences of PkTRAMP of Peninsular Malaysia and Malaysian Borneo revealed 38 dimorphic sites. A total of 27 haplotypes were identified from the amino acid sequence alignment. Haplotype analysis revealed that there was no clustering of PkTRAMP from Peninsular Malaysia and Malaysian Borneo.
  16. Lai MY, Rafieqin N, Lee PYL, Amir Rawa MS, Dzul S, Yahaya N, et al.
    Trop Biomed, 2021 Sep 01;38(3):248-253.
    PMID: 34362867 DOI: 10.47665/tb.38.3.065
    Through the regional control programme, Malaysia has been successfully reducing the incidence of Plasmodium falciparum and Plasmodium vivax infections. However, the incidence of zoonotic malaria Plasmodium knowlesi infection is increasing and now has been the major cause of malaria in Malaysia especially Malaysian Borneo. The emergence of knowlesi infection has threatened the malaria elimination programme which the government aims to reduce the overall malaria infections by 2020. Unlike other benign human Plasmodium spp., P. knowlesi can cause fatal infections. The aim of this study was to determine the incidence and distribution of five human malaria parasites including P. knowlesi in Peninsular Malaysia and Malaysian Borneo. A total of 112 blood samples were collected from seven states and district hospitals in Peninsular Malaysia and Malaysian Borneo from year 2015 to 2016. The samples were examined by microscopy and further confirmed by nested PCR assay targeting 18S rRNA gene of Plasmodium spp. Following the nested PCR assays, a total of 54 (48.2%) samples were positive for P. knowlesi infections, 12 (10.7%) cases were positive for P. vivax infections, followed by 7 (6.3%) cases of P. falciparum and 4 (3.5%) cases of P. malariae. There were 3 cases (2.7%) of mixed infections (P. knowlesi/P. vivax). However, no cases were identified as P. ovale. A total of 32 (28.6%) cases were found as negative infections. LoopMediated Isothermal Amplification Assay (LAMP) was performed to confirm inconclusive results produced by microscopy and nested PCR. P. knowlesi showed the highest prevalence in Sarawak (n= 30), Sabah (n=13), Pulau Pinang (n=5) and Pahang (n=6). PCR and LAMP was not able to detect a large number of microscopy positive samples due to DNA degradation during storage and shipping. Among all the states involved in this study, the highest prevalence of P. knowlesi infection was found in Sabah and Sarawak.
  17. Abdullah NR, Norahmad NA, Jelip J, Sulaiman LH, Mohd Sidek H, Ismail Z, et al.
    Malar J, 2013;12:198.
    PMID: 23758930 DOI: 10.1186/1475-2875-12-198
    Sulphadoxine-pyrimethamine (SP) has been in use for the treatment of uncomplicated falciparum malaria in Malaysia since the 1970s and is still widely employed in spite of widespread clinical resistance. Resistance to SP is known to be mediated by mutations in the pfdhfr and pfdhps genes. The aim of the present study was to investigate the distribution of pfdhfr and pfdhps gene polymorphism in Plasmodium falciparum field isolates from Kalabakan, Sabah, in northern Borneo.
  18. Norahmad NA, Abdullah NR, Yaccob N, Jelip J, Dony JF, Ruslan KF, et al.
    PMID: 22299399
    Chloroquine (CQ) remains the first line drug for the prevention and treatment of malaria in Malaysia in spite of the fact that resistance to CQ has been observed in Malaysia since the 1960s. CQ-resistance is associated with various mutations in pfcrt, which encodes a putative transporter located in the digestive vacuolar membrane of P. falciparum. Substitution of lysine (K) to threonine (T) at amino acid 76 (K76T) in pfcrt is the primary genetic marker conferring resistance to CQ. To determine the presence of T76 mutation in pfcrt from selected areas of Kalabakan, Malaysia 619 blood samples were screened for P. falciparum, out of which 31 were positive. Blood samples were collected on 3 MM Whatman filter papers and DNA was extracted using QIAmp DNA mini kit. RFLP-PCR for the detection of the CQ-resistant T76 and sensitive K76 genotype was carried out. Twenty-five samples were shown to have the point mutation in pfcrt whereas the remaining samples were classified as CQ-sensitive (wild-type). In view of the fact that CQ is the first line anti-malarial drug in Malaysia, this finding could be an important indication that treatment with CQ may no longer be effective in the future.
  19. Yusof R, Lau YL, Mahmud R, Fong MY, Jelip J, Ngian HU, et al.
    Malar J, 2014;13:168.
    PMID: 24886266 DOI: 10.1186/1475-2875-13-168
    Plasmodium knowlesi is a simian parasite that has been recognized as the fifth species causing human malaria. Naturally-acquired P. knowlesi infection is widespread among human populations in Southeast Asia. The aim of this epidemiological study was to determine the incidence and distribution of malaria parasites, with a particular focus on human P. knowlesi infection in Malaysia.
  20. Liew JWK, Mahpot RB, Dzul S, Abdul Razak HAB, Ahmad Shah Azizi NAB, Kamarudin MB, et al.
    Am J Trop Med Hyg, 2018 06;98(6):1709-1713.
    PMID: 29877176 DOI: 10.4269/ajtmh.17-1010
    Although Plasmodium vivax infections in Malaysia are usually imported, a significant autochthonous outbreak of vivax malaria was detected in a remote indigenous (Orang Asli) settlement located in northern peninsular Malaysia. Between November 2016 and April 2017, 164 cases of P. vivax infection were detected. Although 83.5% of the vivax cases were identified through passive case detection and contact screening during the first 7 weeks, subsequent mass blood screening (combination of rapid diagnostic tests, blood films, and polymerase chain reaction [PCR]) of the entire settlement (N = 3,757) revealed another 27 P. vivax infections, 19 of which were asymptomatic. The mapped data from this active case detection program was used to direct control efforts resulting in the successful control of the outbreak in this region. This report highlights the importance of proactive case surveillance and timely management of malaria control in Malaysia as it nears malaria elimination.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links