Displaying publications 1 - 20 of 27 in total

Abstract:
Sort:
  1. Ooi CH, Phang WK, Liew JWK, Atroosh WM, Lau YL
    Trop Med Int Health, 2023 Jun;28(6):486-500.
    PMID: 37042251 DOI: 10.1111/tmi.13875
    OBJECTIVES: Malaysia has achieved the status of zero indigenous human malaria cases. Nevertheless, imported human malaria has increasingly been reported in Sarawak, Malaysian Borneo. As zoonotic malaria caused by Plasmodium knowlesi remains a major public health problem in Sarawak, the threat of imported malaria must be addressed as it can cause human malaria reintroduction, sustain transmission, and lead to complications. The objectives of this study were to investigate the epidemiological characteristics of imported malaria cases reported in Sarawak and to underline the challenge posed by imported malaria towards malaria elimination efforts.

    METHODS: Imported malaria cases reported in Sarawak from 2011 to 2019 were collected from Sarawak State Health Department and analysed in this longitudinal retrospective study.

    RESULTS: A total of 2058 imported malaria cases were registered in all districts in Sarawak. Highest number of cases were reported in Kapit (n = 559; 27.16%), followed by Sibu (n = 424; 20.6%), and Miri (n = 166; 8.07%). Based on the demographic profile, most of the patients constituted of either male sex (98.49%), age group of 40-49 years (39.6%), Iban ethnic (57.92%), worked in logging industry (88.58%), Malaysian nationals (91.84%), contracted malaria in Papua New Guinea (46.11%), uncomplicated disease (77.89%), or hospitalised cases (97.86%). The most prominent Plasmodium species diagnosed were P. vivax (52.67%) and P. falciparum (35.81%).

    CONCLUSIONS: Surveillance, disease detection, and medical follow-up must be carried out thoroughly for individuals who returned from malaria-endemic countries. It is also necessary to promote pre-travel preventive education as well as chemoprophylaxis to travellers heading to endemic areas.

  2. Mat Salleh NH, Rahman MFA, Samsusah S, De Silva JR, Ng DC, Ghozali AH, et al.
    Trans R Soc Trop Med Hyg, 2020 Sep 01;114(9):700-703.
    PMID: 32511702 DOI: 10.1093/trstmh/traa042
    Five children in Pos Lenjang, Pahang, Malaysia were PCR-positive for vivax malaria and were admitted to the hospital from 5 to 26 July 2019. One of the patients experienced three episodes of recurrence of vivax malaria. Microsatellite analysis showed that reinfection is unlikely. Drug resistance analysis indicated that Riamet (artemether-lumefantrine) is effective. Cytochrome P450 2D6 (CYP2D6) testing showed that this patient has defective CYP2D6 function. Primaquine failure to clear the Plasmodium vivax hypnozoites may be the cause of recurring infections in this patient. This report highlights the need for the development of liver-stage curative antimalarials that do not require metabolism by the CYP2D6 enzyme.
  3. Liew JWK, Ooi CH, Snounou G, Lau YL
    Am J Trop Med Hyg, 2019 12;101(6):1402-1404.
    PMID: 31595863 DOI: 10.4269/ajtmh.19-0305
    Here are two cases of recurring ovale malaria in Sarawak, Malaysia, that are likely relapses that occurred 1-2 months after successful treatment of the initial imported falciparum malaria with artemisinin-based combined therapy. The patients have no history or recollection of previous malaria episodes. These cases add to the limited evidence on the relapsing nature of Plasmodium ovale, after a febrile episode. In regions where P. ovale is not known to be autochthonous, active follow-up of treated imported malaria patients is highly recommended following their return, particularly to areas nearing or having achieved elimination.
  4. Liew JWK, Mahpot RB, Dzul S, Abdul Razak HAB, Ahmad Shah Azizi NAB, Kamarudin MB, et al.
    Am J Trop Med Hyg, 2018 06;98(6):1709-1713.
    PMID: 29877176 DOI: 10.4269/ajtmh.17-1010
    Although Plasmodium vivax infections in Malaysia are usually imported, a significant autochthonous outbreak of vivax malaria was detected in a remote indigenous (Orang Asli) settlement located in northern peninsular Malaysia. Between November 2016 and April 2017, 164 cases of P. vivax infection were detected. Although 83.5% of the vivax cases were identified through passive case detection and contact screening during the first 7 weeks, subsequent mass blood screening (combination of rapid diagnostic tests, blood films, and polymerase chain reaction [PCR]) of the entire settlement (N = 3,757) revealed another 27 P. vivax infections, 19 of which were asymptomatic. The mapped data from this active case detection program was used to direct control efforts resulting in the successful control of the outbreak in this region. This report highlights the importance of proactive case surveillance and timely management of malaria control in Malaysia as it nears malaria elimination.
  5. Selvarajoo S, Liew JWK, Chua TH, Tan W, Zaki RA, Ngui R, et al.
    Sci Rep, 2022 01 12;12(1):571.
    PMID: 35022501 DOI: 10.1038/s41598-021-04643-4
    Dengue remains a major public threat and existing dengue control/surveillance programs lack sensitivity and proactivity. More efficient methods are needed. A cluster randomized controlled trial was conducted for 18 months to determine the efficacy of using a combination of gravid oviposition sticky (GOS) traps and dengue non-structural 1 (NS1) antigen for early surveillance of dengue among Aedes mosquito. Eight residential apartments were randomly assigned into intervention and control groups. GOS traps were placed at the intervention apartments weekly to trap Aedes mosquitoes and these tested for dengue NS1 antigen. When dengue-positive pool was detected, the community were notified and advised to execute protective measures. Fewer dengue cases were recorded in the intervention group than the control. Detection of NS1-positive mosquitoes was significantly associated with GOS Aedes index (rs = 0.68, P 
  6. Jeyaprakasam NK, Low VL, Liew JWK, Pramasivan S, Wan-Sulaiman WY, Saeung A, et al.
    Sci Rep, 2022 01 10;12(1):354.
    PMID: 35013403 DOI: 10.1038/s41598-021-04106-w
    Blood feeding and host-seeking behaviors of a mosquito play an imperative role in determining its vectorial capacity in transmitting pathogens. Unfortunately, limited information is available regarding blood feeding behavior of Anopheles species in Malaysia. Collection of resting Anopheles mosquitoes for blood meal analysis poses a great challenge especially for forest dwelling mosquitoes. Therefore, a laboratory-based study was conducted to evaluate the potential use of mosquitoes caught using human landing catch (HLC) for blood meal analysis, and subsequently to document blood feeding behavior of local Anopheles mosquitoes in Peninsular Malaysia. The laboratory-based experiment from this study revealed that mosquitoes caught using HLC had the potential to be used for blood meal analysis. Besides HLC, mosquitoes were also collected using manual aspirator and Mosquito Magnet. Overall, 47.4% of 321 field-caught Anopheles mosquitoes belonging to six species were positive for vertebrate host DNA in their blood meal. The most frequent blood meal source was human (45.9%) followed by wild boar (27.4%), dog (15.3%) and monkey (7.5%). Interestingly, only Anopheles cracens and Anopheles introlatus (Leucosphyrus Group) fed on monkey. This study further confirmed that members of the Leucosphyrus Group are the predominant vectors for knowlesi malaria transmission in Peninsular Malaysia mainly due to their simio-anthropophagic feeding behavior.
  7. Selvarajoo S, Liew JWK, Tan W, Lim XY, Refai WF, Zaki RA, et al.
    Sci Rep, 2020 Jun 12;10(1):9534.
    PMID: 32533017 DOI: 10.1038/s41598-020-66212-5
    Dengue has become a global public health problem. Despite reactive efforts by the government in Malaysia, the dengue cases are on the increase. Adequate knowledge, positive attitude and correct practice for dengue control are essential to stamp out the disease. Hence, this study aims to assess the factors associated with dengue knowledge, attitude and practice (KAP), as well as the association with dengue IgM and IgG seropositivity. A community-based cross-sectional study was conducted in a closed, dengue endemic area with multi-storey dwellings . Five hundred individuals (aged 18 years and above) were approached for pre-tested KAP and seroprevalences assessment. The study showed only half of the total participants have good knowledge (50.7%) but they had insufficient knowledge about dengue during pregnancy. 53.2% of people had poor attitude and 50.2% reported poor practice for dengue control. Out of 85 respondents who agreed to participate in the dengue seroprevalence study, 74.1% (n = 63) were positive for dengue IgG and 7.1% (n = 6) were positive for dengue IgM. Among all sociodemographic variable, race is the only independent predicator for all KAP levels (P 
  8. Liew JWK, Fong MY, Lau YL
    PeerJ, 2017;5:e3577.
    PMID: 28761783 DOI: 10.7717/peerj.3577
    Quantitative reverse transcription PCR (qRT-PCR) has been an integral part of characterizing the immunity of Anopheles mosquitoes towards Plasmodium invasion. Two anti-Plasmodium factors of Anopheles, thioester-containing protein 1 (TEP1) and nitric oxide synthase (NOS), play a role in the refractoriness of Anopheles towards Plasmodium infection and are generally expressed during infection. However, these are less studied in Anopheles dirus, a dominant malaria vector in Southeast Asia. Furthermore, most studies used a single reference gene for normalization during gene expression analysis without proper validation. This may lead to erroneous quantification of expression levels. Therefore, the present study characterized and investigated the expression profiles of TEP1 and NOS of Anopheles dirus during P. berghei infection. Prior to that, the elongation factor 1-alpha (EF1), actin 1 (Act) and ribosomal protein S7 (S7) genes were validated for their suitability as a set of reference genes. TEP1 and NOS expressions in An. dirus were found to be significantly induced after P. berghei infection.
  9. Jeyaprakasam NK, Pramasivan S, Liew JWK, Van Low L, Wan-Sulaiman WY, Ngui R, et al.
    Parasit Vectors, 2021 Apr 01;14(1):184.
    PMID: 33794965 DOI: 10.1186/s13071-021-04689-3
    BACKGROUND: Vector surveillance is essential in determining the geographical distribution of mosquito vectors and understanding the dynamics of malaria transmission. With the elimination of human malaria cases, knowlesi malaria cases in humans are increasing in Malaysia. This necessitates intensive vector studies using safer trapping methods which are both field efficient and able to attract the local vector populations. Thus, this study evaluated the potential of Mosquito Magnet as a collection tool for Anopheles mosquito vectors of simian malaria along with other known collection methods.

    METHODS: A randomized 4 × 4 Latin square designed experiment was conducted to compare the efficiency of the Mosquito Magnet against three other common trapping methods: human landing catch (HLC), CDC light trap and human baited trap (HBT). The experiment was conducted over six replicates where sampling within each replicate was carried out for 4 consecutive nights. An additional 4 nights of sampling was used to further evaluate the Mosquito Magnet against the "gold standard" HLC. The abundance of Anopheles sampled by different methods was compared and evaluated with focus on the Anopheles from the Leucosphyrus group, the vectors of knowlesi malaria.

    RESULTS: The Latin square designed experiment showed HLC caught the greatest number of Anopheles mosquitoes (n = 321) compared to the HBT (n = 87), Mosquito Magnet (n = 58) and CDC light trap (n = 13). The GLMM analysis showed that the HLC method caught significantly more Anopheles mosquitoes compared to Mosquito Magnet (P = 0.049). However, there was no significant difference in mean nightly catch of Anopheles mosquitoes between Mosquito Magnet and the other two trapping methods, HBT (P = 0.646) and CDC light traps (P = 0.197). The mean nightly catch for both An. introlatus (9.33 ± 4.341) and An. cracens (4.00 ± 2.273) caught using HLC was higher than that of Mosquito Magnet, though the differences were not statistically significant (P > 0.05). This is in contrast to the mean nightly catch of An. sinensis (15.75 ± 5.640) and An. maculatus (15.78 ± 3.479) where HLC showed significantly more mosquito catches compared to Mosquito Magnet (P 

  10. Pramasivan S, Ngui R, Jeyaprakasam NK, Low VL, Liew JWK, Vythilingam I
    Parasit Vectors, 2023 Oct 09;16(1):355.
    PMID: 37814287 DOI: 10.1186/s13071-023-05984-x
    BACKGROUND: Malaria parasites such as Plasmodium knowlesi, P. inui, and P. cynomolgi are spread from macaques to humans through the Leucosphyrus Group of Anopheles mosquitoes. It is crucial to know the distribution of these vectors to implement effective control measures for malaria elimination. Plasmodium knowlesi is the most predominant zoonotic malaria parasite infecting humans in Malaysia.

    METHODS: Vector data from various sources were used to create distribution maps from 1957 to 2021. A predictive statistical model utilizing logistic regression was developed using significant environmental factors. Interpolation maps were created using the inverse distance weighted (IDW) method and overlaid with the corresponding environmental variables.

    RESULTS: Based on the IDW analysis, high vector abundances were found in the southwestern part of Sarawak, the northern region of Pahang and the northwestern part of Sabah. However, most parts of Johor, Sabah, Perlis, Penang, Kelantan and Terengganu had low vector abundance. The accuracy test indicated that the model predicted sampling and non-sampling areas with 75.3% overall accuracy. The selected environmental variables were entered into the regression model based on their significant values. In addition to the presence of water bodies, elevation, temperature, forest loss and forest cover were included in the final model since these were significantly correlated. Anopheles mosquitoes were mainly distributed in Peninsular Malaysia (Titiwangsa range, central and northern parts), Sabah (Kudat, West Coast, Interior and Tawau division) and Sarawak (Kapit, Miri, and Limbang). The predicted Anopheles mosquito density was lower in the southern part of Peninsular Malaysia, the Sandakan Division of Sabah and the western region of Sarawak.

    CONCLUSION: The study offers insight into the distribution of the Leucosphyrus Group of Anopheles mosquitoes in Malaysia. Additionally, the accompanying predictive vector map correlates well with cases of P. knowlesi malaria. This research is crucial in informing and supporting future efforts by healthcare professionals to develop effective malaria control interventions.

  11. Wong ML, Liew JWK, Wong WK, Pramasivan S, Mohamed Hassan N, Wan Sulaiman WY, et al.
    Parasit Vectors, 2020 Aug 12;13(1):414.
    PMID: 32787974 DOI: 10.1186/s13071-020-04277-x
    BACKGROUND: The endosymbiont bacterium Wolbachia is maternally inherited and naturally infects some filarial nematodes and a diverse range of arthropods, including mosquito vectors responsible for disease transmission in humans. Previously, it has been found infecting most mosquito species but absent in Anopheles and Aedes aegypti. However, recently these two mosquito species were found to be naturally infected with Wolbachia. We report here the extent of Wolbachia infections in field-collected mosquitoes from Malaysia based on PCR amplification of the Wolbachia wsp and 16S rRNA genes.

    METHODS: The prevalence of Wolbachia in Culicinae mosquitoes was assessed via PCR with wsp primers. For some of the mosquitoes, in which the wsp primers failed to amplify a product, Wolbachia screening was performed using nested PCR targeting the 16S rRNA gene. Wolbachia sequences were aligned using Geneious 9.1.6 software, analyzed with BLAST, and the most similar sequences were downloaded. Phylogenetic analyses were carried out with MEGA 7.0 software. Graphs were drawn with GraphPad Prism 8.0 software.

    RESULTS: A total of 217 adult mosquitoes representing 26 mosquito species were screened. Of these, infections with Wolbachia were detected in 4 and 15 mosquito species using wsp and 16S rRNA primers, respectively. To our knowledge, this is the first time Wolbachia was detected using 16S rRNA gene amplification, in some Anopheles species (some infected with Plasmodium), Culex sinensis, Culex vishnui, Culex pseudovishnui, Mansonia bonneae and Mansonia annulifera. Phylogenetic analysis based on wsp revealed Wolbachia from most of the mosquitoes belonged to Wolbachia Supergroup B. Based on 16S rRNA phylogenetic analysis, the Wolbachia strain from Anopheles mosquitoes were more closely related to Wolbachia infecting Anopheles from Africa than from Myanmar.

    CONCLUSIONS: Wolbachia was found infecting Anopheles and other important disease vectors such as Mansonia. Since Wolbachia can affect its host by reducing the life span and provide resistance to pathogen infection, several studies have suggested it as a potential innovative tool for vector/vector-borne disease control. Therefore, it is important to carry out further studies on natural Wolbachia infection in vector mosquitoes' populations as well as their long-term effects in new hosts and pathogen suppression.

  12. Junaid QO, Khaw LT, Mahmud R, Ong KC, Lau YL, Borade PU, et al.
    Parasite, 2017;24:38.
    PMID: 29034874 DOI: 10.1051/parasite/2017040
    BACKGROUND: As the quest to eradicate malaria continues, there remains a need to gain further understanding of the disease, particularly with regard to pathogenesis. This is facilitated, apart from in vitro and clinical studies, mainly via in vivo mouse model studies. However, there are few studies that have used gerbils (Meriones unguiculatus) as animal models. Thus, this study is aimed at characterizing the effects of Plasmodium berghei ANKA (PbA) infection in gerbils, as well as the underlying pathogenesis.

    METHODS: Gerbils, 5-7 weeks old were infected by PbA via intraperitoneal injection of 1 × 106 (0.2 mL) infected red blood cells. Parasitemia, weight gain/loss, hemoglobin concentration, red blood cell count and body temperature changes in both control and infected groups were monitored over a duration of 13 days. RNA was extracted from the brain, spleen and whole blood to assess the immune response to PbA infection. Organs including the brain, spleen, heart, liver, kidneys and lungs were removed aseptically for histopathology.

    RESULTS: Gerbils were susceptible to PbA infection, showing significant decreases in the hemoglobin concentration, RBC counts, body weights and body temperature, over the course of the infection. There were no neurological signs observed. Both pro-inflammatory (IFNγ and TNF) and anti-inflammatory (IL-10) cytokines were significantly elevated. Splenomegaly and hepatomegaly were also observed. PbA parasitized RBCs were observed in the organs, using routine light microscopy and in situ hybridization.

    CONCLUSION: Gerbils may serve as a good model for severe malaria to further understand its pathogenesis.

  13. Jeyaprakasam NK, Liew JWK, Low VL, Wan-Sulaiman WY, Vythilingam I
    PLoS Negl Trop Dis, 2020 12;14(12):e0008900.
    PMID: 33382697 DOI: 10.1371/journal.pntd.0008900
    Plasmodium knowlesi, a simian malaria parasite, has been in the limelight since a large focus of human P. knowlesi infection was reported from Sarawak (Malaysian Borneo) in 2004. Although this infection is transmitted across Southeast Asia, the largest number of cases has been reported from Malaysia. The increasing number of knowlesi malaria cases has been attributed to the use of molecular tools for detection, but environmental changes including deforestation likely play a major role by increasing human exposure to vector mosquitoes, which coexist with the macaque host. In addition, with the reduction in human malaria transmission in Southeast Asia, it is possible that human populations are at a greater risk of P. knowlesi infection due to diminishing cross-species immunity. Furthermore, the possibility of increasing exposure of humans to other simian Plasmodium parasites such as Plasmodium cynomolgi and Plasmodium inui should not be ignored. We here review the current status of these parasites in humans, macaques, and mosquitoes to support necessary reorientation of malaria control and elimination in the affected areas.
  14. Jeyaprakasam NK, Low VL, Pramasivan S, Liew JWK, Wan-Sulaiman WY, Vythilingam I
    PLoS Negl Trop Dis, 2023 Jun;17(6):e0011438.
    PMID: 37384790 DOI: 10.1371/journal.pntd.0011438
    BACKGROUND: The elimination of malaria in Southeast Asia has become more challenging as a result of rising knowlesi malaria cases. In addition, naturally occurring human infections with other zoonotic simian malaria caused by Plasmodium cynomolgi and Plasmodium inui adds another level of complexity in malaria elimination in this region. Unfortunately, data on vectors which are responsible for transmitting this zoonotic disease is very limited.

    METHODOLOGY/PRINCIPAL FINDINGS: We conducted longitudinal studies to investigate the entomological parameters of the simian malaria vectors and to examine the genetic diversity and evolutionary pattern of their simian Plasmodium. All the captured Anopheles mosquitoes were dissected to examine for the presence of oocysts, sporozoites and to determine the parous rate. Our study revealed that the Anopheles Leucosphyrus Group mosquitoes are highly potential competent vectors, as evidenced by their high rate of parity, survival and sporozoite infections in these mosquitoes. Thus, these mosquitoes represent a risk of human infection with zoonotic simian malaria in this region. Haplotype analysis on P. cynomolgi and P. inui, found in high prevalence in the Anopheles mosquitoes from this study, had shown close relationship between simian Plasmodium from the Anopheles mosquitoes with its vertebrate hosts. This directly signifies the ongoing transmission between the vector, macaques, and humans. Furthermore, population genetic analysis showed significant negative values which suggest that both Plasmodium species are undergoing population expansion.

    CONCLUSIONS/SIGNIFICANCE: With constant microevolutionary processes, there are potential for both P. inui and P. cynomolgi to emerge and spread as a major public health problem, following the similar trend of P. knowlesi. Therefore, concerted vector studies in other parts of Southeast Asia are warranted to better comprehend the transmission dynamics of this zoonotic simian malaria which eventually would aid in the implementation of effective control measures in a rapidly changing environment.

  15. Pramasivan S, Ngui R, Jeyaprakasam NK, Liew JWK, Low VL, Mohamed Hassan N, et al.
    Malar J, 2021 Oct 29;20(1):426.
    PMID: 34715864 DOI: 10.1186/s12936-021-03963-0
    BACKGROUND: Plasmodium knowlesi, a simian malaria parasite infection, increases as Plasmodium falciparum and Plasmodium vivax infections decrease in Johor, Malaysia. Therefore, this study aimed to identify the distribution of vectors involved in knowlesi malaria transmission in Johor. This finding is vital in estimating hotspot areas for targeted control strategies.

    METHODS: Anopheles mosquitoes were collected from the location where P. knowlesi cases were reported. Cases of knowlesi malaria from 2011 to 2019 in Johor were analyzed. Internal transcribed spacers 2 (ITS2) and cytochrome c oxidase subunit I (COI) genes were used to identify the Leucosphyrus Group of Anopheles mosquitoes. In addition, spatial analysis was carried out on the knowlesi cases and vectors in Johor.

    RESULTS: One hundred and eighty-nine cases of P. knowlesi were reported in Johor over 10 years. Young adults between the ages of 20-39 years comprised 65% of the cases. Most infected individuals were involved in agriculture and army-related occupations (22% and 32%, respectively). Four hundred and eighteen Leucosphyrus Group Anopheles mosquitoes were captured during the study. Anopheles introlatus was the predominant species, followed by Anopheles latens. Spatial analysis by Kriging interpolation found that hotspot regions of P. knowlesi overlapped or were close to the areas where An. introlatus and An. latens were found. A significantly high number of vectors and P. knowlesi cases were found near the road within 0-5 km.

    CONCLUSIONS: This study describes the distribution of P. knowlesi cases and Anopheles species in malaria-endemic transmission areas in Johor. Geospatial analysis is a valuable tool for studying the relationship between vectors and P. knowlesi cases. This study further supports that the Leucosphyrus Group of mosquitoes might be involved in transmitting knowlesi malaria cases in Johor. These findings may provide initial evidence to prioritize diseases and vector surveillance.

  16. Mahendran P, Liew JWK, Amir A, Ching XT, Lau YL
    Malar J, 2020 Jul 10;19(1):241.
    PMID: 32650774 DOI: 10.1186/s12936-020-03314-5
    BACKGROUND: Plasmodium knowlesi and Plasmodium vivax are the predominant Plasmodium species that cause malaria in Malaysia and play a role in asymptomatic malaria disease transmission in Malaysia. The diagnostic tools available to diagnose malaria, such as microscopy and rapid diagnostic test (RDT), are less sensitive at detecting lower parasite density. Droplet digital polymerase chain reaction (ddPCR), which has been shown to have higher sensitivity at diagnosing malaria, allows direct quantification without the need for a standard curve. The aim of this study is to develop and use a duplex ddPCR assay for the detection of P. knowlesi and P. vivax, and compare this method to nested PCR and qPCR.

    METHODS: The concordance rate, sensitivity and specificity of the duplex ddPCR assay were determined and compared to nested PCR and duplex qPCR.

    RESULTS: The duplex ddPCR assay had higher analytical sensitivity (P. vivax = 10 copies/µL and P. knowlesi = 0.01 copies/µL) compared to qPCR (P. vivax = 100 copies/µL and P. knowlesi = 10 copies/µL). Moreover, the ddPCR assay had acceptable clinical sensitivity (P. vivax = 80% and P. knowlesi = 90%) and clinical specificity (P. vivax = 87.84% and P. knowlesi = 81.08%) when compared to nested PCR. Both ddPCR and qPCR detected more double infections in the samples.

    CONCLUSIONS: Overall, the ddPCR assay demonstrated acceptable efficiency in detection of P. knowlesi and P. vivax, and was more sensitive than nested PCR in detecting mixed infections. However, the duplex ddPCR assay still needs optimization to improve the assay's clinical sensitivity and specificity.

  17. van Schalkwyk DA, Blasco B, Davina Nuñez R, Liew JWK, Amir A, Lau YL, et al.
    PMID: 30831468 DOI: 10.1016/j.ijpddr.2019.02.004
    New antimalarial agents are identified and developed after extensive testing on Plasmodium falciparum parasites that can be grown in vitro. These susceptibility studies are important to inform lead optimisation and support further drug development. Until recently, little was known about the susceptibility of non-falciparum species as these had not been adapted to in vitro culture. The recent culture adaptation of P. knowlesi has therefore offered an opportunity to routinely define the drug susceptibility of this species, which is phylogenetically closer to all other human malarias than is P. falciparum. We compared the in vitro susceptibility of P. knowlesi and P. falciparum to a range of established and novel antimalarial agents under identical assay conditions. We demonstrated that P. knowlesi is significantly less susceptible than P. falciparum to six of the compounds tested; and notably these include three ATP4 inhibitors currently under development as novel antimalarial agents, and one investigational antimalarial, AN13762, which is 67 fold less effective against P. knowlesi. For the other compounds there was a less than two-fold difference in susceptibility between species. We then compared the susceptibility of a recent P. knowlesi isolate, UM01, to that of the well-established, older A1-H.1 clone. This recent isolate showed similar in vitro drug susceptibility to the A1-H.1 clone, supporting the ongoing use of the better characterised clone to further study drug susceptibility. Lastly, we used isobologram analysis to explore the interaction of a selection of drug combinations and showed similar drug interactions across species. The species differences in drug susceptibility reported by us here and previously, support adding in vitro drug screens against P. knowlesi to those using P. falciparum strains to inform new drug discovery and lead optimisation.
  18. Liew JWK, Selvarajoo S, Tan W, Ahmad Zaki R, Vythilingam I
    Infect Dis Poverty, 2019 Sep 03;8(1):71.
    PMID: 31477185 DOI: 10.1186/s40249-019-0584-y
    BACKGROUND: Dengue is a global disease, transmitted by the Aedes vectors. In 2018, there were 80 615 dengue cases with 147 deaths in Malaysia. Currently, the nationwide surveillance programs are dependent on Aedes larval surveys and notifications of lab-confirmed human infections. The existing, reactive programs appear to lack sensitivity and proactivity. More efficient dengue vector surveillance/control methods are needed.

    METHODS: A parallel, cluster, randomized controlled, interventional trial is being conducted for 18 months in Damansara Damai, Selangor, Malaysia, to determine the efficacy of using gravid oviposition sticky (GOS) trap and dengue non-structural 1 (NS1) antigen test for early surveillance of dengue among Aedes mosquitoes to reduce dengue outbreaks. Eight residential apartments were randomly assigned into intervention and control arms. GOS traps are set at the apartments to collect Aedes weekly, following which dengue NS1 antigen is detected in these mosquitoes. When a dengue-positive mosquito is detected, the community will be advised to execute vector search-and-destroy and protective measures. The primary outcome concerns the the percentage change in the (i) number of dengue cases and (ii) durations of dengue outbreaks. Whereas other outcome measures include the change in density threshold of Aedes and changes in dengue-related knowledge, attitude and practice among cluster inhabitants.

    DISCUSSION: This is a proactive and early dengue surveillance in the mosquito vector that does not rely on notification of dengue cases. Surveillance using the GOS traps should be able to efficiently provide sufficient coverage for multistorey dwellings where population per unit area is likely to be higher. Furthermore, trapping dengue-infected mosquitoes using the GOS trap, helps to halt the dengue transmission carried by the mosquito. It is envisaged that the results of this randomized controlled trial will provide a new proactive, cheap and targeted surveillance tool for the prevention and control of dengue outbreaks.

    TRIAL REGISTRATION: This is a parallel-cluster, randomized controlled, interventional trial, registered at ClinicalTrials.gov (ID: NCT03799237), on 8th January 2019 (retrospectively registered).

  19. Amir A, Cheong FW, de Silva JR, Liew JWK, Lau YL
    Infect Drug Resist, 2018;11:1145-1155.
    PMID: 30127631 DOI: 10.2147/IDR.S148664
    Originally known to cause simian malaria, Plasmodium knowlesi is now known as the fifth human malaria species. Since the publishing of a report that largely focused on human knowlesi cases in Sarawak in 2004, many more human cases have been reported in nearly all of the countries in Southeast Asia and in travelers returning from these countries. The zoonotic nature of this infection hinders malaria elimination efforts. In order to grasp the current perspective of knowlesi malaria, this literature review explores the different aspects of the disease including risk factors, diagnosis, treatment, and molecular and functional studies. Current studies do not provide sufficient data for an effective control program. Therefore, future direction for knowlesi research is highlighted here with a final aim of controlling, if not eliminating, the parasite.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links