Displaying all 13 publications

Abstract:
Sort:
  1. Jalleh RP, Mukherjee A, Krishnan MM
    Med J Malaysia, 1987 Dec;42(4):242-7.
    PMID: 3454396
    In 1985, 140 (26.1 %) of 536 admissions to the intensive care unit (ICU) were general surgical cases. Retrospective review of 107 of these admissions revealed four factors to be significantly different between survivors and non-survivors, p < 0.01. They were duration of stay, organ system failure, sepsis and complications. The role of the surgeon in an ICU where management is interdisciplinary is emphasised.
  2. Ahuja P, Waris A, Siddiqui SS, Mukherjee A
    J Genet Eng Biotechnol, 2022 Jan 31;20(1):17.
    PMID: 35099614 DOI: 10.1186/s43141-022-00297-5
    BACKGROUND: Diabetic retinopathy (DR) is a common microvascular complication of diabetes. There is strong evidence suggesting that DR has an inheritable component. The interaction between advanced glycation end products (AGEs) and their receptor is integral in the pathogenesis of diabetic retinopathy and its various complications, retinopathy being one of them.

    OVERVIEW AND METHODOLOGY: This review discusses the existing literature on the association between single nucleotide variants (SNV) of AGER gene and the risk of DR. It also discusses the current understanding of the AGE-AGER pathway in diabetic retinopathy. Through our article we have tried to consolidate all the available information about these SNVs associated with diabetic retinopathy in a succinct tabular form. Additionally, a current understanding of the AGE-AGER interaction and its deleterious effects on the cells of the retina has been discussed in detail to provide comprehensive information about the topic to the reader. A literature review was performed on PubMed, Cochrane Library, and Google Scholar for studies to find existing literature on the association between AGER gene SNVs and the risk, progression and severity of developing DR. This article will encourage scientific communication and discussion about possibly devising genetic markers for an important cause of blindness both in developed and developing countries, i.e., diabetic retinopathy.

    RESULT: Based on genetic studies done in Indian and Chinese population G82S(rs2070600) was positively associated with Diabetic Retinopathy. Patients of diabetic retinopathy in Caucasian population had -T374A(rs1800624) polymorphism. + 20T/A was found to be associated with the disease in a study done in UK. Association with G1704T(rs184003) was seen in Chinese and Malaysian population. A Chinese study found its association with CYB242T. -T429C(rs1800625) SNV was not associated with DR in any of the studies. G2245A(rs55640627) was positively associated with the disease process in Malaysian population. It was not associated in Malaysian and Chinese population. Promoter variant rs1051993 has also been found to a susceptible SNV in the Chinese population.

    CONCLUSION: While providing a comprehensive review of the existing information, we would like to emphasize on a large, multi-centric, trial with a much larger and varied population base to definitely determine these single nucleotide variants predisposing diabetic individuals.

  3. Ellwanger JH, Lekgoathi MDS, Nemani K, Tarselli MA, Al Harraq A, Uzonyi A, et al.
    Science, 2020 07 03;369(6499):26-29.
    PMID: 32631879 DOI: 10.1126/science.abd1320
  4. Mukherjee AP, Foong WC, Ferguson BR
    Med J Malaya, 1971 Jun;25(4):285-7.
    PMID: 4261302
  5. Mukhopadhyay M, Mukherjee A, Ganguli S, Chakraborti A, Roy S, Choudhury SS, et al.
    Front Microbiol, 2023;14:1293302.
    PMID: 38156003 DOI: 10.3389/fmicb.2023.1293302
    Microorganisms are integral components of ecosystems, exerting profound impacts on various facets of human life. The recent United Nations General Assembly (UNGA) Science Summit emphasized the critical importance of comprehending the microbial world to address global challenges, aligning with the United Nations Sustainable Development Goals (SDGs). In agriculture, microbes are pivotal contributors to food production, sustainable energy, and environmental bioremediation. However, decades of agricultural intensification have boosted crop yields at the expense of soil health and microbial diversity, jeopardizing global food security. To address this issue, a study in West Bengal, India, explored the potential of a novel multi-strain consortium of plant growth promoting (PGP) Bacillus spp. for soil bioaugmentation. These strains were sourced from the soil's native microbial flora, offering a sustainable approach. In this work, a composite inoculum of Bacillus zhangzhouensis MMAM, Bacillus cereus MMAM3), and Bacillus subtilis MMAM2 were introduced into an over-exploited agricultural soil and implications on the improvement of vegetative growth and yield related traits of Gylcine max (L) Meril. plants were evaluated, growing them as model plant, in pot trial condition. The study's findings demonstrated significant improvements in plant growth and soil microbial diversity when using the bacterial consortium in conjunction with vermicompost. Metagenomic analyses revealed increased abundance of many functional genera and metabolic pathways in consortium-inoculated soil, indicating enhanced soil biological health. This innovative bioaugmentation strategy to upgrade the over-used agricultural soil through introduction of residual PGP bacterial members as consortia, presents a promising path forward for sustainable agriculture. The rejuvenated patches of over-used land can be used by the small and marginal farmers for cultivation of resilient crops like soybean. Recognizing the significance of multi-strain PGP bacterial consortia as potential bioinoculants, such technology can bolster food security, enhance agricultural productivity, and mitigate the adverse effects of past agricultural activities.
  6. Halder A, Jethwa M, Mukherjee P, Ghosh S, Das S, Helal Uddin ABM, et al.
    Artif Cells Nanomed Biotechnol, 2020 Nov 17;48(1):1362-1371.
    PMID: 33284038 DOI: 10.1080/21691401.2020.1850465
    Cancer management presents multifarious problems. Triple negative breast cancer (TNBC) is associated with inaccurate prognosis and limited chemotherapeutic options. Betulinic acid (BA) prevents angiogenesis and causes apoptosis of TNBC cells. NIH recommends BA for rapid access in cancer chemotherapy because of its cell-specific toxicity. BA however faces major challenges in therapeutic practices due to its limited solubility and cellular entree. We report lactoferrin (Lf) attached BA nanoparticles (Lf-BAnp) for rapid delivery in triple negative breast (MDA-MB-231) and laryngeal (HEp-2) cancer cell types. Lf association was confirmed by SDS-PAGE and FT-IR analysis. Average hydrodynamic size of Lf-BAnp was 147.7 ± 6.20 nm with ζ potential of -28.51 ± 3.52 mV. BA entrapment efficiency was 75.38 ± 2.70% and the release mechanism followed non-fickian pattern. Impact of Lf-BAnp on cell cycle and cytotoxicity of triple negative breast cancer and its metastatic site laryngeal cancer cell lines were analyzed. Lf-BAnp demonstrated strong anti-proliferative and cytotoxic effects, along with increased sub-G1 population and reduced number of cells in G1 and G2/M phases of the cell cycle, confirming reduced cell proliferation and significant cell death. Speedy intracellular entry of Lf-BAnp occurred within 30 min. Lf-BAnp design was explored for the first time as safer chemotherapeutic arsenals against complex TNBC conditions.
  7. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
  8. Das S, Roy P, Pal R, Auddy RG, Chakraborti AS, Mukherjee A
    PLoS One, 2014;9(7):e101818.
    PMID: 24991800 DOI: 10.1371/journal.pone.0101818
    Silybin, is one imminent therapeutic for drug induced hepatotoxicity, human prostate adenocarcinoma and other degenerative organ diseases. Recent evidences suggest that silybin influences gluconeogenesis pathways favorably and is beneficial in the treatment of type 1 and type 2 diabetes. The compound however is constrained due to solubility (0.4 mg/mL) and bioavailabilty limitations. Appropriate nanoparticle design for silybin in biocompatible polymers was thus proposed as a probable solution for therapeutic inadequacy. New surface engineered biopolymeric nanoparticles with high silybin encapsulation efficiency of 92.11% and zeta potential of +21 mV were designed. Both the pure compound and the nanoparticles were evaluated in vivo for the first time in experimental diabetic conditions. Animal health recovered substantially and the blood glucose levels came down to near normal values after 28 days treatment schedule with the engineered nanoparticles. Restoration from hyperglycemic damage condition was traced to serum insulin regeneration. Serum insulin recovered from the streptozotocin induced pancreatic damage levels of 0.17 ± 0.01 µg/lit to 0.57 ± 0.11 µg/lit after nanoparticle treatment. Significant reduction in glycated hemoglobin level, and restoration of liver glycogen content were some of the other interesting observations. Engineered silybin nanoparticle assisted recovery in diabetic conditions was reasoned due to improved silybin dissolution, passive transport in nanoscale, and restoration of antioxidant status.
  9. Roy P, Das S, Auddy RG, Mukherjee A
    Int J Nanomedicine, 2014;9:4723-35.
    PMID: 25336950 DOI: 10.2147/IJN.S65262
    Andrographolide (AG) is one of the most potent labdane diterpenoid-type free radical scavengers available from plant sources. The compound is the principal bioactive component in Andrographis paniculata leaf extracts, and is responsible for anti-inflammatory, anticancer, and immunomodulatory activity. The application of AG in therapeutics, however, is severely constrained, due to its low aqueous solubility, short biological half-life, and poor cellular permeability. Engineered nanoparticles in biodegradable polymer systems were therefore conceived as one solution to aid in further drug-like applications of AG. In this study, a cationic modified poly(lactic-co-glycolic) acid nanosystem was applied for evaluation against experimental mouse hepatotoxic conditions. Biopolymeric nanoparticles of hydrodynamic size of 229.7 ± 17.17 nm and ζ-potential +34.4 ± 1.87 mV facilitated marked restoration in liver functions and oxidative stress markers. Superior dissolution for bioactive AG, hepatic residence, and favorable cytokine regulation in the liver tissues are some of the factors responsible for the newer nanosystem-assisted rapid recovery.
  10. Jalleh RP, Pathmanathan R, Krishnan MM, Mukherjee A
    Postgrad Med J, 1988 Sep;64(755):669-71.
    PMID: 3251217
    Four cases of anorectal melanoma are presented. The authors believe that this is the first report of the occurrence of this tumour in Malays. Advanced disease at initial presentation accounts for the poor prognosis observed in this series. Surgery remains the principal treatment modality, although controversy exists regarding optimal extent of resection.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links