Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Ullah S, Khan MI, Khan MN, Ali U, Ali B, Iqbal R, et al.
    ACS Omega, 2023 Jun 13;8(23):20488-20504.
    PMID: 37323381 DOI: 10.1021/acsomega.3c00753
    The threat of varying global climates has greatly driven the attention of scientists, as climate change increases the odds of worsening drought in many parts of Pakistan and the world in the decades ahead. Keeping in view the forthcoming climate change, the present study aimed to evaluate the influence of varying levels of induced drought stress on the physiological mechanism of drought resistance in selected maize cultivars. The sandy loam rhizospheric soil with moisture content 0.43-0.5 g g-1, organic matter (OM) 0.43-0.55 g/kg, N 0.022-0.027 g/kg, P 0.028-0.058 g/kg, and K 0.017-0.042 g/kg was used in the present experiment. The findings showed that a significant drop in the leaf water status, chlorophyll content, and carotenoid content was linked to an increase in sugar, proline, and antioxidant enzyme accumulation at p < 0.05 under induced drought stress, along with an increase in protein content as a dominant response for both cultivars. SVI-I & II, RSR, LAI, LAR, TB, CA, CB, CC, peroxidase (POD), and superoxide dismutase (SOD) content under drought stress were studied for variance analysis in terms of interactions between drought and NAA treatment and were found significant at p < 0.05 after 15 days. It has been found that the exogenous application of NAA alleviated the inhibitory effect of only short-term water stress, but yield loss due to long-term osmotic stress will not be faced employing growth regulators. Climate-smart agriculture is the only approach to reduce the detrimental impact of global fluctuations, such as drought stress, on crop adaptability before they have a significant influence on world crop production.
  2. Khan ZUR, Assad N, Naeem-Ul-Hassan M, Sher M, Alatawi FS, Alatawi MS, et al.
    BMC Chem, 2023 Sep 28;17(1):128.
    PMID: 37770921 DOI: 10.1186/s13065-023-01047-5
    In this study, a polar extract of Aconitum lycoctonum L. was used for the synthesis of silver nanoparticles (AgNPs), followed by their characterization using different techniques and evaluation of their potential as antioxidants, amylase inhibitors, anti-inflammatory and antibacterial agents. The formation of AgNPs was detected by a color change, from transparent to dark brown, within 15 min and a surface resonance peak at 460 nm in the UV-visible spectrum. The FTIR spectra confirmed the involvement of various biomolecules in the synthesis of AgNPs. The average diameter of these spherical AgNPs was 67 nm, as shown by the scanning electron micrograph. The inhibition zones showed that the synthesized nanoparticles inhibited the growth of Gram-positive and negative bacteria. FRAP and DPPH assays were used to demonstrate the antioxidant potential of AgNPs. The highest value of FRAP (50.47% AAE/mL) was detected at a concentration of 90 ppm and a DPPH scavenging activity of 69.63% GAE was detected at a concentration of 20 µg/mL of the synthesized AgNPs. 500 µg/mL of the synthesized AgNPs were quite efficient in causing 91.78% denaturation of ovalbumin. The AgNPs mediated by A. lycoctonum also showed an inhibitory effect on α-amylase. Therefore, AgNPs synthesized from A. lycoctonum may serve as potential candidates for antibacterial, antioxidant, anti-inflammatory, and antidiabetic agents.
  3. Menon K, Razak SA, Ismail KA, Krishna BV
    BMC Res Notes, 2014;7:680.
    PMID: 25270226 DOI: 10.1186/1756-0500-7-680
    Cancer therapy in Malaysia primarily focuses on the clinical management of patients with cancer and malnutrition continues to be one of the major causes of death in these patients. There is a dearth of information on the nutrient intake and status of newly diagnosed patients with cancer prior to the initiation of treatment. The present study aims to assess the nutrient intake and status of newly diagnosed patients with cancer from the East Coast of Peninsular Malaysia.
  4. A Razak SA, Mohd Gazzali A, Fisol FA, M Abdulbaqi I, Parumasivam T, Mohtar N, et al.
    Cancers (Basel), 2021 Jan 22;13(3).
    PMID: 33499040 DOI: 10.3390/cancers13030400
    Docetaxel (DCX) is a highly effective chemotherapeutic drug used in the treatment of different types of cancer, including non-small cell lung cancer (NSCLC). The drug is known to have low oral bioavailability due to its low aqueous solubility, poor membrane permeability and susceptibility to hepatic first-pass metabolism. To mitigate these problems, DCX is administered via the intravenous route. Currently, DCX is commercially available as a single vial that contains polysorbate 80 and ethanol to solubilize the poorly soluble drug. However, this formulation causes short- and long-term side effects, including hypersensitivity, febrile neutropenia, fatigue, fluid retention, and peripheral neuropathy. DCX is also a substrate to the drug efflux pump P-glycoprotein (P-gp) that would reduce its concentration within the vicinity of the cells and lead to the development of drug resistance. Hence, the incorporation of DCX into various nanocarrier systems has garnered a significant amount of attention in recent years to overcome these drawbacks. The surfaces of these drug-delivery systems indeed can be functionalized by modification with different ligands for smart targeting towards cancerous cells. This article provides an overview of the latest nanotechnological approaches and the delivery systems that were developed for passive and active delivery of DCX via different routes of administration for the treatment of lung cancer.
  5. Idris Z, Zakaria Z, Halim SA, Razak SA, Ghani ARI, Abdullah JM
    Childs Nerv Syst, 2021 05;37(5):1797-1802.
    PMID: 32949261 DOI: 10.1007/s00381-020-04893-z
    The neural basis for epilepsy and attention deficit hyperactivity disorder (ADHD) is currently incompletely known. We reported a young girl with both epilepsy and ADHD, who had a calcified lesion in the right basolateral amygdalo-hippocampal region extending to the ventral striatum. The child underwent disconnecting surgery and biopsy of the lesion. Fascinatingly, the child's behavior changed immediately after the surgery from inattentive and impulsive to nearly normal behavior experiencing no more breakthrough seizures since after 3 years of surgery. The Schaltenbrand Wahren Brain Atlas revealed alveus, cornu ammonis, amygdala superficialis, and medium as the disconnected region in this surgery.
  6. Ghaleb FA, Al-Rimy BAS, Boulila W, Saeed F, Kamat M, Foad Rohani M, et al.
    Comput Intell Neurosci, 2021;2021:2977954.
    PMID: 34413885 DOI: 10.1155/2021/2977954
    Wireless mesh networks (WMNs) have emerged as a scalable, reliable, and agile wireless network that supports many types of innovative technologies such as the Internet of Things (IoT), Wireless Sensor Networks (WSN), and Internet of Vehicles (IoV). Due to the limited number of orthogonal channels, interference between channels adversely affects the fair distribution of bandwidth among mesh clients, causing node starvation in terms of insufficient bandwidth distribution, which impedes the adoption of WMN as an efficient access technology. Therefore, a fair channel assignment is crucial for the mesh clients to utilize the available resources. However, the node starvation problem due to unfair channel distribution has been vastly overlooked during channel assignment by the extant research. Instead, existing channel assignment algorithms equally distribute the interference reduction on the links to achieve fairness which neither guarantees a fair distribution of the network bandwidth nor eliminates node starvation. In addition, the metaheuristic-based solutions such as genetic algorithm, which is commonly used for WMN, use randomness in creating initial population and selecting the new generation usually leading the search to local minima. To this end, this study proposes a Fairness-Oriented Semichaotic Genetic Algorithm-Based Channel Assignment Technique (FA-SCGA-CAA) to solve node starvation problem in wireless mesh networks. FA-SCGA-CAA maximizes link fairness while minimizing link interference using a genetic algorithm (GA) with a novel nonlinear fairness-oriented fitness function. The primary chromosome with powerful genes is created based on multicriterion links ranking channel assignment algorithm. Such a chromosome was used with a proposed semichaotic technique to create a strong population that directs the search towards the global minima effectively and efficiently. The proposed semichaotic technique was also used during the mutation and parent selection of the new genes. Extensive experiments were conducted to evaluate the proposed algorithm. A comparison with related work shows that the proposed FA-SCGA-CAA reduced the potential node starvation by 22% and improved network capacity utilization by 23%. It can be concluded that the proposed FA-SCGA-CAA is reliable to maintain high node-level fairness while maximizing the utilization of the network resources, which is the ultimate goal of many wireless networks.
  7. Rashid SN, Hizaddin HF, Hayyan A, Chan SE, Hasikin K, Razak SA, et al.
    Environ Technol, 2023 Nov 13.
    PMID: 37953730 DOI: 10.1080/09593330.2023.2283093
    Using natural deep eutectic solvents (NADESs) as a green reagent is a step toward producing environmentally friendly and sustainable technology. This study screened three natural DESs developed using quaternary ammonium salt and organic acid to analyse their capability to extract nickel ions from contaminated mangrove soil, which are ChCl: Acetic Acid (ChCl-AceA), ChCl: Levulinic Acid (ChCl-LevA), and ChCl: Ethylene Glycol(ChCl-Eg) at molar ratio 1:2. The impact of various operating parameters such as washing agent concentration, pH solution, and contact time on the NADES performance in the dissolution of Ni ions batch experiments were performed. The optimal soil washing conditions for metal removal were 30% and 15% concentration, a 1:5 soil-liquid ratio, and pH 2 of ChCl-LevA and ChCl-AceA, respectively. A single removal washing may remove 70.8% and 70.0% Ni ions from the contaminated soil. The dissolution kinetic of Ni ions extraction onto NADES was explained using the linear kinetic pseudo and intraparticle mass transfer diffusion models. The kinetic validation demonstrates a good fit between the experimental and pseudo-second-order Lagergren data. The model's maximum Ni dissolution capacity, Qe are 51.56 mg g-1 and 52.00 mg g-1 of ChCl-LevA and ChCl-AceA, respectively. The synthesised natural-based DES has the potential to be a cost-effective, efficient, green alternative extractant to conventional solvent extraction of heavy metals.
  8. Tan EH, Razak SA, Abdullah JM, Mohamed Yusoff AA
    Epilepsy Res, 2012 Dec;102(3):210-5.
    PMID: 22944210 DOI: 10.1016/j.eplepsyres.2012.08.004
    Generalized epilepsy with febrile seizures plus (GEFS+) comprises a group of clinically and genetically heterogeneous epilepsy syndrome. Here, we provide the first report of clinical presentation and mutational analysis of SCN1A gene in 36 Malaysian GEFS+ patients. Mutational analysis of SCN1A gene revealed twenty seven sequence variants (missense mutation and silent polymorphism also intronic polymorphism), as well as 2 novel de-novo mutations were found in our patients at coding regions, c.5197A>G (N1733D) and c.4748A>G (H1583R). Our findings provide potential genetic insights into the pathogenesis of GEFS+ in Malaysian populations concerning the SCN1A gene mutations.
  9. Othman A, Razak SA, Nasir A, Ghazali AK, Mohd Radzi MAR
    Eur J Investig Health Psychol Educ, 2023 Jun 09;13(6):1015-1025.
    PMID: 37366781 DOI: 10.3390/ejihpe13060077
    Febrile seizures in children are an alarming experience for parents. This study aimed to assess the psychological functioning of parents of children when they were being admitted for treatment of febrile seizures in the hospital, the importance of which is clear, since parents are the primary custodian of their children. This is a cross-sectional study conducted on 110 participants whose child had been admitted for a febrile seizure to Hospital Universiti Sains Malaysia from September 2020 until June 2021. The depression, anxiety, and stress levels were determined based on a validated Bahasa Melayu questionnaire of the Depression Anxiety Stress Scale (DASS-21). In addition, multiple logistic regression was used to determine the associated factors related to the participants' psychological functioning. The mean age of children with febrile seizures were 21 months old, and most children showed features of simple febrile seizures (71.8%). The prevalence of anxiety, stress, and depression were 58.2%, 29%, and 23.6%, respectively. Using multiple logistic regression, child age, family history of febrile seizures, family history of epilepsy, and length of stay in the ward were found to be significantly associated with anxiety when adjusted for other variables. Otherwise, for depression and stress, no significant associated variables were found when adjusted for other variables. Anxiety was highly reported by participants when their children were admitted for febrile seizures. Several factors impacted their anxiety, including the lower the child's age was, participants with no family history of febrile seizures before, and the longer duration of hospital stay. Therefore, further study and intervention on reducing the parent's anxiety could be emphasized in the future.
  10. Taufek NM, Aspani F, Muin H, Raji AA, Razak SA, Alias Z
    Fish Physiol Biochem, 2016 Aug;42(4):1143-55.
    PMID: 26886132 DOI: 10.1007/s10695-016-0204-8
    This study was conducted to investigate the growth performance, biomarkers of oxidative stress, catalase (CAT), superoxide dismutase (SOD), and glutathione S-transferase (GST) as well as the haematological response of African catfish after being fed with fish feed containing different levels of cricket meal. The juvenile fish were assigned to three different treatments with isonitrogenous (35 %) and isoenergetic (19 kJ g(-1)) diets containing 100 % cricket meal (100 % CM), 75 % cricket meal (75 % CM), and 100 % fishmeal (100 % FM) as control groups for 7 weeks. The results indicated that a diet containing 100 % CM and 75 % CM improved growth performance in terms of body weight gain and specific growth rate, when compared to 100 % FM. The feed conversion ratio (FCR) and protein efficiency ratio (PER) did not differ significantly between all diets, but reduced FCR and increased PER were observed with a higher inclusion of cricket meal. A haematological examination of fish demonstrated no significant difference of red blood cells in all diets and white blood cells showed a significantly higher value in fishmeal-fed fish. On the other hand, haemoglobin and haematocrit significantly increased with increasing amounts of cricket meal in the diet. Antioxidant activity of CAT was higher in the 100 % CM group compared to fish fed other diets, whereas GST and SOD showed increasing trends with a higher incorporation of cricket, although insignificant differences were observed between all diets. These results suggest that cricket meal could be an alternative to fishmeal as a protein source in the African catfish diet.
  11. Palaniveloo K, Yee-Yinn L, Jia-Qi L, Chelliah A, Sze-Looi S, Nagappan T, et al.
    Foods, 2021 Aug 20;10(8).
    PMID: 34441709 DOI: 10.3390/foods10081932
    Seaweeds are an important ingredient of functional foods recommended for daily food, due to their unique compositions and nutritional value. Padina tetrastromatica is a brown edible seaweed that is commonly found along the coastal regions of Peninsular Malaysia and consumed as food by some coastal communities. This study investigates the nutritional and antihyperglycaemic potential of P. tetrastromatica extracts, which is generally accepted as an important functional food. In our methodology, we induced diabetes intraperitoneally in experimental animals with a dose of 65 mg kg-1 body weight of streptozotocin. Oral treatment with 200 and 400 mg kg-1 of P. tetrastromatica ethanolic and ethyl acetate extracts were initiated, respectively, to experimental rats once daily for 18 days. Metformin was used as the positive control. Biochemical estimations and histopathological analysis were included in this study. Treatment with P. tetrastromatica extracts significantly lowered the plasma glucose levels in Streptozotocin-induced diabetic rats. In addition, P. tetrastromatica extract treatment also showed a significant reduction in serum alanine transaminase levels. However, no significant changes were observed in serum aspartate transaminase levels. The ethyl acetate extract of P. tetrastromatica at 400 mg kg-1 dose shows some nephroprotective effect, which is observed from the significant increase in the plasma albumin levels. Histopathological evaluation revealed no marked morphological changes in tissues of the isolated organs of the ethyl acetate extract-treated group, revealing the safe nature of P. tetrastromatica.
  12. Neo EX, Hasikin K, Mokhtar MI, Lai KW, Azizan MM, Razak SA, et al.
    Front Public Health, 2022;10:851553.
    PMID: 35664109 DOI: 10.3389/fpubh.2022.851553
    Environmental issues such as environmental pollutions and climate change are the impacts of globalization and become debatable issues among academics and industry key players. One of the environmental issues which is air pollution has been catching attention among industrialists, researchers, and communities around the world. However, it has always neglected until the impacts on human health become worse, and at times, irreversible. Human exposure to air pollutant such as particulate matters, sulfur dioxide, ozone and carbon monoxide contributed to adverse health hazards which result in respiratory diseases, cardiorespiratory diseases, cancers, and worst, can lead to death. This has led to a spike increase of hospitalization and emergency department visits especially at areas with worse pollution cases that seriously impacting human life and health. To address this alarming issue, a predictive model of air pollution is crucial in assessing the impacts of health due to air pollution. It is also critical in predicting the air quality index when assessing the risk contributed by air pollutant exposure. Hence, this systemic review explores the existing studies on anticipating air quality impact to human health using the advancement of Artificial Intelligence (AI). From the extensive review, we highlighted research gaps in this field that are worth to inquire. Our study proposes to develop an AI-based integrated environmental and health impact assessment system using federated learning. This is specifically aims to identify the association of health impact and pollution based on socio-economic activities and predict the Air Quality Index (AQI) for impact assessment. The output of the system will be utilized for hospitals and healthcare services management and planning. The proposed solution is expected to accommodate the needs of the critical and prioritization of sensitive group of publics during pollution seasons. Our finding will bring positive impacts to the society in terms of improved healthcare services quality, environmental and health sustainability. The findings are beneficial to local authorities either in healthcare or environmental monitoring institutions especially in the developing countries.
  13. Dewi R, Hamid ZA, Rajab NF, Shuib S, Razak SA
    Hum Exp Toxicol, 2020 May;39(5):577-595.
    PMID: 31884827 DOI: 10.1177/0960327119895570
    Benzene is a known hematotoxic and leukemogenic agent with hematopoietic stem cells (HSCs) niche being the potential target. Occupational and environmental exposure to benzene has been linked to the incidences of hematological disorders and malignancies. Previous studies have shown that benzene may act via multiple modes of action targeting HSCs niche, which include induction of chromosomal and micro RNA aberrations, leading to genetic and epigenetic modification of stem cells and probable carcinogenesis. However, understanding the mechanism linking benzene to the HSCs niche dysregulation is challenging due to complexity of its microenvironment. The niche is known to comprise of cell populations accounted for HSCs and their committed progenitors of lymphoid, erythroid, and myeloid lineages. Thus, it is fundamental to address novel approaches via lineage-directed strategy to elucidate precise mechanism involved in benzene-induced toxicity targeting HSCs and progenitors of different lineages. Here, we review the key genetic and epigenetic factors that mediate hematotoxicological effects by benzene and its metabolites in targeting HSCs niche. Overall, the use of combined genetic, epigenetic, and lineage-directed strategies targeting the HSCs niche is fundamental to uncover the key mechanisms in benzene-induced hematological disorders and malignancies.
  14. Tan EH, Yusoff AA, Abdullah JM, Razak SA
    J Pediatr Neurosci, 2012 May;7(2):123-5.
    PMID: 23248692 DOI: 10.4103/1817-1745.102575
    In this report, we describe a 15-year-old Malaysian male patient with a de novo SCN1A mutation who experienced prolonged febrile seizures after his first seizure at 6 months of age. This boy had generalized tonic clonic seizure (GTCS) which occurred with and without fever. Sequencing analysis of voltage-gated sodium channel a1-subunit gene, SCN1A, confirmed a homozygous A to G change at nucleotide 5197 (c.5197A > G) in exon 26 resulting in amino acid substitution of asparagines to aspartate at codon 1733 of sodium channel. The mutation identified in this patient is located in the pore-forming loop of SCN1A and this case report suggests missense mutation in pore-forming loop causes generalized epilepsy with febrile seizure plus (GEFS+) with clinically more severe neurologic phenotype including intellectual disabilities (mental retardation and autism features) and neuropsychiatric disease (anxiety disorder).
  15. Salleh NA, Rosli FN, Akbar MA, Yusof A, Sahrani FK, Razak SA, et al.
    Mar Pollut Bull, 2021 Nov;172:112850.
    PMID: 34391012 DOI: 10.1016/j.marpolbul.2021.112850
    This study investigates bacterial diversity and potential pathogens in the international ships' ballast water at Tanjung Pelepas Port, Malaysia, using 16S rRNA amplicon sequencing. Thirty-four bacterial phylum, 305 families, 577 genera, and 941 species were detected in eight ballast water samples of different origins. The similarity of the bacterial composition between samples was found to be random and not tied to geographical locations. The bacterial abundance did not seem to be affected by related physicochemical except for temperature. Ballast water samples with a temperature lower than 25 °C showed a relatively lower bacterial abundance. A total of 33 potential pathogens were detected from all ballast water samples. Pseudomonas spp., Tenacibaculum spp., Flavobacteriaceae spp., Halomonas spp., and Acinetobacter junii are the potential pathogens with more than 10% OTU prevalence. This study would provide beneficial information for further enhancing ballast water microorganism guidelines in Malaysia.
  16. Awang MS, Abdullah JM, Abdullah MR, Tahir A, Tharakan J, Prasad A, et al.
    Med Sci Monit, 2007 Jul;13(7):CR330-2.
    PMID: 17599028
    Nerve conduction study is essential in the diagnosis of focal neuropathies and diffuse polyneuropathies. There are many factors that can affect nerve conduction velocity, and age is one of them. Most of the many studies of this effect, and the values from them, were on Caucasian subjects. Therefore, this study was designed to investigate the effect of age on conduction velocity among healthy Asian Malay subjects by analyzing its influence on the median, ulnar, and sural nerves.
  17. Shaheen S, Khalid S, Siqqique R, Abbas M, Ifikhar T, Ijaz I, et al.
    Microb Pathog, 2023 Dec;185:106428.
    PMID: 37977480 DOI: 10.1016/j.micpath.2023.106428
    In the present research project, the first report on comparative analysis of the taxonomical, biological and pharmacological potential of healthy and geminivirus infected Hibiscus rosa sinensis (L.) leaves of the family Malvaceae was done by using different micro and macroscopic techniques. First of all, leaves were characterized for Cotton leaf curl Multan virus (CLCuMuV) and its associated betasatellite (Cotton leaf curl Multan Betasatellite; CLCuMB). Different morphological parameters like shape and size of stem, leaves, seeds and roots, presence and absence of ligule, distance between nodes and internodes and type of inflorescence etc. were analyzed. CLCuMuV infected H. rosa-sinensis revealed systematic symptoms of infection like chlorosis of leaves, stunted growth, decrease in size of roots, shoots and distortion etc. Anatomical investigation was performed under light ad scanning electron microscope. Different anatomical features like length and shape of guard cells, subsidiary cells, presence or absence of stomata, secretory ducts and trichomes were examined. In both plant samples anomocytic types of stomata and elongated, non-glandular and pointed tip trichomes were present, but the size (especially length and width) of trichomes and other cells like epidermal, subsidiary, and guard cells were highest in virus infected plants likened to healthy one. In the antibacterial activity, the maximum antibacterial potentail was seen in methanolic extract of K. pneumonea while antifungal activity was shown by methanolic extract of A. solani. Plants interact with different biological entities according to environmental conditions continuously and evolved. These types of interactions induce changes positively and negatively on plant metabolism and metabolites production. Many plant viruses also attacked various host plants consequently alter their secondary metabolism. To overcome such virus infected plants produces many important and different types of secondary plant metabolites as a defense response. Subsequent analysis of this n-hexane plant extract using Gas chromatography mass spectroscopy technique revealed that Hibiscus eluted contained 10 main compounds in Healthy sample and 13 compounds in infected one. Presence of essential secondary metabolites were also analyzed by FTIR analysis. The present study provides a comprehensive and novel review on taxonomy (morphology, anatomy) and antimicrobial potential of both healthy and geminivirus infected H. rosa-sinensis.
  18. Arif H, Qayyum S, Akhtar W, Fatima I, Kayani WK, Rahman KU, et al.
    Micromachines (Basel), 2023 Jun 23;14(7).
    PMID: 37512596 DOI: 10.3390/mi14071285
    The current study attempts to evaluate the formation, morphology, and physico-chemical properties of zinc oxide nanoparticles (ZnO NPs) synthesized from Clinopodium vulgare extract at different pH values and to investigate their antimicrobial and biomedical application potential. The reduction of zinc ions to ZnO NPs was determined by UV spectra, which revealed absorption peaks at 390 nm at pH 5 and 348 nm at pH 9, respectively. The spherical morphology of the nanoparticles was observed using scanning electron microscopy (SEM), and the size was 47 nm for pH 5 and 45 nm for pH 9. Fourier-transformed infrared spectroscopy (FTIR) was used to reveal the presence of functional groups on the surface of nanoparticles. The antibacterial activity was examined against Staphylococcus aureus, Streptococcus pyogenes, and Klebsiella pneumonia via the agar-well diffusion method. Comparatively, the highest activities were recorded at pH 9 against all bacterial strains, and among these, biogenic ZnO NPs displayed the maximum inhibition zone (i.e., 20.88 ± 0.79 mm) against S. aureus. ZnO NPs prepared at pH 9 exhibited the highest antifungal activity of 80% at 25 mg/mL and antileishmanial activity of 82% at 400 mg/mL. Altogether, ZnO NPs synthesized at pH 9 show promising antimicrobial potential and could be used for biomedical applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links