METHODS: We used the squamocolumnar junction (SCJ), antral and body biopsies from the 52 Helicobacter pylori-negative healthy volunteers who had participated in our earlier physiological study and did not have hiatus hernia, transsphincteric acid reflux, Barrett's oesophagus or intestinal metaplasia (IM) at cardia. The densities of inflammatory cells and reactive atypia were scored at squamous, cardiac and oxyntocardiac mucosa of SCJ, antrum and body. Slides were stained for caudal type homeobox 2 (CDX-2), villin, trefoil factor family 3 (TFF-3) and liver-intestine (LI)-cadherin, mucin MUC1, Muc-2 and Muc-5ac. In addition, biopsies from 15 Barrett's patients with/without IM were stained and scored as comparison. Immunohistological characteristics were correlated with parameters of obesity and high-resolution pH metry recording.
RESULTS: Cardiac mucosa had a similar intensity of inflammatory infiltrate to non-IM Barrett's and greater than any of the other upper GI mucosae. The immunostaining pattern of cardiac mucosa most closely resembled non-IM Barrett's showing only slightly weaker CDX-2 immunostaining. In distal oesophageal squamous mucosa, expression of markers of columnar differentiation (TFF-3 and LI-cadherin) was apparent and these correlated with central obesity (correlation coefficient (CC)=0.604, p=0.001 and CC=0.462, p=0.002, respectively). In addition, expression of TFF-3 in distal oesophageal squamous mucosa correlated with proximal extension of gastric acidity within the region of the lower oesophageal sphincter (CC=-0.538, p=0.001).
CONCLUSIONS: These findings are consistent with expansion of cardia in healthy volunteers occurring by squamo columnar metaplasia of distal oesophagus and aggravated by central obesity. This metaplastic origin of expanded cardia may be relevant to the substantial proportion of cardia adenocarcinomas unattributable to H. pylori or transsphincteric acid reflux.
DESIGN: Secondary analysis of a cross-sectional point prevalence study.
SETTING: A total of 128 PICUs in 26 countries.
PATIENTS: Less than 18 years with severe sepsis on 5 separate days (2013-2014).
INTERVENTIONS: None.
MEASUREMENTS AND MAIN RESULTS: Patients were categorized as having either no neurologic dysfunction or neurologic dysfunction (i.e., present at or after sepsis recognition), which was defined as Glasgow Coma Scale score less than 5 and/or fixed dilated pupils. Our primary outcome was death or new moderate disability (i.e., Pediatric Overall [or Cerebral] Performance Category score ≥3 and change ≥1 from baseline) at hospital discharge, and 87 of 567 severe sepsis patients (15%) had neurologic dysfunction within 7 days of sepsis recognition (61 at sepsis recognition and 26 after sepsis recognition). Primary site of infection varied based on presence of neurologic dysfunction. Death or new moderate disability occurred in 161 of 480 (34%) without neurologic dysfunction, 45 of 61 (74%) with neurologic dysfunction at sepsis recognition, and 21 of 26 (81%) with neurologic dysfunction after sepsis recognition (p < 0.001 across all groups). On multivariable analysis, in comparison with those without neurologic dysfunction, neurologic dysfunction whether at sepsis recognition or after was associated with increased odds of death or new moderate disability (adjusted odds ratio, 4.9 [95% CI, 2.3-10.1] and 10.7 [95% CI, 3.8-30.5], respectively). We failed to identify a difference between these adjusted odds ratios of death or new moderate disability that would indicate a differential risk of outcome based on timing of neurologic dysfunction (p = 0.20).
CONCLUSIONS: In this severe sepsis international cohort, the presence of neurologic dysfunction during sepsis is associated with worse outcomes at hospital discharge. The impact of early versus late onset of neurologic dysfunction in sepsis on outcome remains unknown, and further work is needed to better understand timing of neurologic dysfunction onset in pediatric sepsis.
DESIGN: We conducted a secondary analysis of the Sepsis PRevalence, OUtcomes, and Therapies study. Data about PICU characteristics, patient demographics, therapies, and outcomes were compared. Multivariable regression models were used to determine adjusted differences in morbidity and mortality.
SETTING: European and U.S. PICUs.
PATIENTS: Children with severe sepsis managed in European and U.S. PICUs enrolled in the Sepsis PRevalence, OUtcomes, and Therapies study.
INTERVENTIONS: None.
MEASUREMENTS AND MAIN RESULTS: European PICUs had fewer beds (median, 11 vs 24; p < 0.001). European patients were younger (median, 1 vs 6 yr; p < 0.001), had higher severity of illness (median Pediatric Index of Mortality-3, 5.0 vs 3.8; p = 0.02), and were more often admitted from the ward (37% vs 24%). Invasive mechanical ventilation, central venous access, and vasoactive infusions were used more frequently in European patients (85% vs 68%, p = 0.002; 91% vs 82%, p = 0.05; and 71% vs 50%; p < 0.001, respectively). Raw morbidity and mortality outcomes were worse for European compared with U.S. patients, but after adjusting for patient characteristics, there were no significant differences in mortality, multiple organ dysfunction, disability at discharge, length of stay, or ventilator/vasoactive-free days.
CONCLUSIONS: Children with severe sepsis admitted to European PICUs have higher severity of illness, are more likely to be admitted from hospital wards, and receive more intensive care therapies than in the United States. The lack of significant differences in morbidity and mortality after adjusting for patient characteristics suggests that the approach to care between regions, perhaps related to PICU bed availability, needs to be considered in the design of future international clinical trials in pediatric severe sepsis.
OBJECTIVE: To assess acute and chronic effects of exercise performed before versus after nutrient ingestion on whole-body and intramuscular lipid utilization and postprandial glucose metabolism.
DESIGN: (1) Acute, randomized, crossover design (Acute Study); (2) 6-week, randomized, controlled design (Training Study).
SETTING: General community.
PARTICIPANTS: Men with overweight/obesity (mean ± standard deviation, body mass index: 30.2 ± 3.5 kg⋅m-2 for Acute Study, 30.9 ± 4.5 kg⋅m-2 for Training Study).
INTERVENTIONS: Moderate-intensity cycling performed before versus after mixed-macronutrient breakfast (Acute Study) or carbohydrate (Training Study) ingestion.
RESULTS: Acute Study-exercise before versus after breakfast consumption increased net intramuscular lipid utilization in type I (net change: -3.44 ± 2.63% versus 1.44 ± 4.18% area lipid staining, P < 0.01) and type II fibers (-1.89 ± 2.48% versus 1.83 ± 1.92% area lipid staining, P < 0.05). Training Study-postprandial glycemia was not differentially affected by 6 weeks of exercise training performed before versus after carbohydrate intake (P > 0.05). However, postprandial insulinemia was reduced with exercise training performed before but not after carbohydrate ingestion (P = 0.03). This resulted in increased oral glucose insulin sensitivity (25 ± 38 vs -21 ± 32 mL⋅min-1⋅m-2; P = 0.01), associated with increased lipid utilization during exercise (r = 0.50, P = 0.02). Regular exercise before nutrient provision also augmented remodeling of skeletal muscle phospholipids and protein content of the glucose transport protein GLUT4 (P < 0.05).
CONCLUSIONS: Experiments investigating exercise training and metabolic health should consider nutrient-exercise timing, and exercise performed before versus after nutrient intake (ie, in the fasted state) may exert beneficial effects on lipid utilization and reduce postprandial insulinemia.