Displaying all 7 publications

Abstract:
Sort:
  1. Chai WS, Sun D, Cheah KH, Li G, Meng H
    ACS Omega, 2020 Aug 11;5(31):19525-19532.
    PMID: 32803046 DOI: 10.1021/acsomega.0c01804
    Hydroxylammonium nitrate (HAN) is a promising green propellant because of its low toxicity, high volumetric specific impulse, and reduced development cost. Electrolytic decomposition of HAN is an efficient approach to prepare it for further ignition and combustion. This paper describes the investigation of a co-electrolysis effect on electrolytic decomposition of HAN-fuel mixtures using stainless steel-platinum (SS-Pt) electrodes. For the first time, different materials were utilized as electrodes to alter the cathodic reaction, which eliminated the inhibition effect and achieved a repeatable and consistent electrolytic decomposition of HAN solution. Urea and methanol were added as fuel components in the HAN-fuel mixtures. When the mass ratio of added urea ≥20%, the electrolytic decomposition of a HAN-urea ternary mixture achieved 67% increment in maximum gas temperature (Tgmax) and 185% increment in overall temperature increasing rate over the benchmark case of HAN solution. The co-electrolysis of urea released additional electrons into the mixtures and enhanced the overall electrolytic decomposition of HAN. In contrast, the addition of methanol did not improve the Tgmax but only increased the overall temperature increasing rate. This work has important implications in the development of an efficient and reliable electrolytic decomposition system of HAN and its mixtures for propulsion applications.
  2. Cai R, Yue X, Wang Y, Yang Y, Sun D, Li H, et al.
    J Ethnopharmacol, 2021 Dec 05;281:114563.
    PMID: 34438033 DOI: 10.1016/j.jep.2021.114563
    ETHNOPHARMACOLOGICAL RELEVANCE: The genus Amomum belonging to the family Zingiberaceae, is mainly distributed in tropical regions of Asia and Oceania. Their fruits and seeds are valuable traditional medicine and used extensively, particularly in South China, India, Malaysia, and Vietnam. The genus Amomum has long been used for treating gastric diseases, digestive disorder, cancer, hepatopathy, malaria, etc. AIMS OF THE REVIEW: The main purpose of this review is to provide the available information on the traditional medicinal uses, phytochemistry, and pharmacology aspects of the genus Amomum in order to explore the trends and perspectives for further studies on its non-volatile constituents.

    MATERIALS AND METHODS: The present review collected the literatures published prior to 2020 on the traditional medicinal uses, phytochemistry, and pharmacology of the genus Amomum. The available literatures were extracted from scientific databases, such as Sci-finder, PubMed, Web of Science, Google Scholar, Baidu Scholar, and CNKI, books, and others.

    RESULTS: Herein, we summarize all 166 naturally occurring non-volatile compounds from 16 plants of the genus Amomum reported in 171 references, including flavonoids, terpenoids, diarylheptanoids, coumarins, etc. Triterpenes and flavonoids are the main constituents among these compounds and maybe play an important role in the activities directly or indirectly. As traditional medicine, the plants from the genus Amomum have been usually used in some traditional herbal prescriptions, and pharmacological researches in vitro and in vivo revealed that the extracts possessed significant antioxidant, anti-inflammatory, anti-allergic activities, etc. CONCLUSION: The review systematically summarizes current studies on traditional medicinal uses, phytochemistry, pharmacological activity on the plants from the genus Amomum. To date, the majority of publications still focused on the research of volatile constituents. However, the promising preliminary data of non-volatile constituents indicated the research potential of this genus in phytochemical and pharmacological aspects. Furthermore, the further in-depth investigations on the safety, efficacy, as well as the stereo-chemistry and structure-activity relationships of pure compounds from this genus are essential in the future.

  3. Ng CA, Sun D, Bashir MJ, Wai SH, Wong LY, Nisar H, et al.
    Bioresour Technol, 2013 Jun;138:38-47.
    PMID: 23612160 DOI: 10.1016/j.biortech.2013.03.129
    It was found that with replenishment, powdered activated carbon (PAC) in the membrane bioreactor (MBR) would develop biologically activated carbon (BAC) which could enhance filtration performance of a conventional MBR. This paper addresses two issues (i) effect of PAC size on MBR (BAC) performance; and (ii) effect of sludge retention time (SRT) on the MBR performance with and without PAC. To interpret the trends, particle/floc size, concentration of mixed liquor suspended solid (MLSS), total organic carbon (TOC), short-term filtration properties and transmembrane pressure (TMP) versus time are measured. The results showed improved fouling control with fine, rather than coarse, PAC provided the flux did not exceed the deposition flux for the fine PAC. Without PAC, the longer SRT operation gave lower fouling at modest fluxes. With PAC addition, the shorter SRT gave better fouling control, possibly due to greater replenishment of the fresh PAC.
  4. Wang P, Yang J, Li X, Liu M, Zhang X, Sun D, et al.
    Sci Rep, 2017 07 26;7(1):6615.
    PMID: 28747656 DOI: 10.1038/s41598-017-06007-3
    Uncovering energy absorption and surface effects of various penetrating velocities on laminar structures is essential for designing protective structures. In this study, both quasi-static and dynamic penetration tests were systematical conducted on the front surfaces of metal sheets coated with a graphene oxide (GO) solution and other media. The addition of a GO fluid film to the front impact surface aided in increasing the penetration strength, improving the failure extension and dissipating additional energy under a wide-range of indentation velocity, from 3.33 × 10-5 m/s to 4.42 m/s. The coated -surfaces improved the specific energy dissipation by approximately 15~40% relative to the dry-contact configuration for both single-layer and double-layer configurations, and specific energy dissipations of double-layer configurations were 20~30% higher than those of the single-layer configurations. This treatment provides a facile strategy in changing the contact state for improving the failure load and dissipate additional energy.
  5. Wang X, Chen B, Bhullar KS, Yang H, Luo X, Fu J, et al.
    Antioxidants (Basel), 2024 Jul 23;13(8).
    PMID: 39199134 DOI: 10.3390/antiox13080888
    Sixteen novel antioxidant peptides from Asian swamp eel (ASE) were identified in previous studies. However, their chemical and cellular antioxidant mechanisms remain unclear. Molecular docking of these peptides with ABTS and DPPH radicals revealed the critical role of hydrogen bonding and Pi-Pi stacking hydrophobic interactions between hydrophobic amino acid residues and free radicals. Residues, such as tryptophan, proline, leucine, and valine, played significant roles in these interactions. All these peptides exhibited notable erythrocyte morphoprotective effects in a model of AAPH-induced oxidative damage of human erythrocytes. Erythrocyte hemolysis was reduced primarily through the modulation of both non-enzymatic (GSH/GSSG) and enzymatic antioxidant systems (SOD, CAT, and GSH-Px) by these peptides. A decrease in levels of MDA, LDH release, and hemoglobin oxidation was observed. Among the peptides, VLYPW demonstrated superior chemical and cellular antioxidant activities, which may be attributed to its higher levels of tyrosine and tryptophan, as well as to its increased hydrophobic amino acid content.
  6. Zeng L, Chua EG, Xiong Y, Ding S, Ai H, Hou Z, et al.
    JGH Open, 2020 Aug;4(4):707-712.
    PMID: 32782960 DOI: 10.1002/jgh3.12322
    Background and Aim: While adenoma detection rate (ADR) is an important quality metric for screening colonoscopy, it remains difficult to be accessed due to the lack of integrated endoscopy and pathology databases. Hence, the use of an adenoma-to-polyp detection rate quotient and polyp detection rate (PDR) has been proposed to predict ADR. This study aimed to examine the usefulness of estimated ADR across different colonic segments in two age groups for Shenzhen people in China.

    Methods: We retrospectively analyzed 7329 colonoscopy procedures performed by 12 endoscopists between January 2012 and February 2014. The PDR, actual ADR, and estimated ADR of the entire, proximal, and distal colon, and within each colonic segment, in two patient age groups: <50 and ≥50 years, were calculated for each endoscopist.

    Results: The overall polyp and adenoma prevalence rates were 19.1 and 9.3%, respectively. The average age of adenoma-positive patients was significantly higher than that of adenoma-negative patients (54 ± 12.6 years vs 42.9 ± 13.2 years, respectively). A total of 1739 polyps were removed, among which 826 were adenomas. More adenomatous polyps were found in the proximal colon (60.4%, 341/565) than in the distal colon (40.9%, 472/1154). Overall, both actual and estimated ADR correlated strongly at the entire colon level and within most colonic segments, except for the cecum and rectum. In both age groups, these parameters correlated strongly within the traverse colon and descending colon.

    Conclusion: Caution should be exercised when predicting ADR within the sigmoid colon and rectum.

  7. Huang L, Luo X, Shao J, Yan H, Qiu Y, Ke P, et al.
    Eur J Clin Microbiol Infect Dis, 2016 Feb;35(2):269-77.
    PMID: 26700953 DOI: 10.1007/s10096-015-2540-5
    Dengue is a rapidly spreading mosquito-borne disease caused by the dengue virus (DENV) and has emerged as a severe public health problem around the world. Guangdong, one of the southern Chinese provinces, experienced a serious outbreak of dengue in 2014, which was believed to be the worst dengue epidemic in China over the last 20 years. To better understand the epidemic, we collected the epidemiological data of the outbreak and analyzed 14,594 clinically suspected dengue patients from 25 hospitals in Guangdong. Dengue cases were then laboratory-confirmed by the detection of DENV non-structural protein 1 (NS1) antigen and/or DENV RNA. Afterwards, clinical manifestations of dengue patients were analyzed and 93 laboratory-positive serum specimens were chosen for the DENV serotyping and molecular analysis. Our data showed that the 2014 dengue outbreak in Guangdong had spread to 20 cities and more than 45 thousand people suffered from dengue fever. Of 14,594 participants, 11,387 were definitively diagnosed. Most manifested with a typical non-severe clinical course, and 1.96 % developed to severe dengue. The strains isolated successfully from the serum samples were identified as DENV-1. Genetic analyses revealed that the strains were classified into genotypes I and V of DENV-1, and the dengue epidemic of Guangdong in 2014 was caused by indigenous cases and imported cases from the neighboring Southeast Asian countries of Malaysia and Singapore. Overall, our study is informative and significant to the 2014 dengue outbreak in Guangdong and will provide crucial implications for dengue prevention and control in China and elsewhere.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links