Several vesicular systems loaded with curcumin have found their way in the therapeutic applications of several diseases, primarily acting through their immunological pathways. Such systems use particles at a nanoscale range, bringing about their intended use through a range of complex mechanisms. Apart from delivering drug substances into target tissues, these vesicular systems also effectively overcome problems like insolubility and unequal drug distribution. Several mechanisms are explored lately by different workers, and interest over vesicular curcumin has been renewed in the past decade. This commentary discusses several immunological targets in which curcumin is employed in a vesicular form.
In the recent years, much attention has been focused on identifying bioactive compounds from medicinal plants that could be employed in therapeutics, which is attributed to their potent pharmacological actions and better toxicological profile. One such example that has come into the light with considerable interest is the pentacyclic triterpenoid, celastrol, which has been found to provide substantial therapeutic properties in a variety of diseases. In an effort to further accelerate its potential to be utilized in clinical practice in the future; along with advancing technologies in the field of drug discovery and development, different researchers have been investigating on the various mechanisms and immunological targets of celastrol that underlie its broad spectrum of pharmacological properties. In this review, we have collated the various research findings related to the molecular modulators responsible for different pharmacological activities shown by celastrol. Our review will be of interest to the herbal, biological, molecular scientist and by providing a quick snapshot about celastrol giving a new direction in the area of herbal drug discovery and development.
Curcumin a component of turmeric, which is derived from Curcuma longa is used as a colouring agent and as a dietary spice for centuries. Extensive studies have been done on the anti-inflammatory activity of curcumin along with its molecular mechanism involving different signalling pathways. However, the physicochemical and biological properties such as poor solubility and rapid metabolism of curcumin have led to low bioavailability and hence limits its application. Current therapies for asthma such as bronchodilators and inhaled corticosteroids (ICS) are aimed at controlling disease symptoms and prevent asthma exacerbation. However, this approach requires lifetime therapy and is associated with a constellation of side effects. This creates a clear unmet medical need and there is an urgent demand for new and more-effective treatments. The present study is aimed to formulate liposomes containing curcumin and evaluate for its anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation on BCi-NS1.1 cell line. Curcumin and salbutamol liposomes were formulated using lipid hydration method. The prepared liposomes were characterized in terms of particle size, zeta potential, encapsulation efficiency and in-vitro release profile. The liposomes were tested on BCI-NS1.1 cell line to evaluate its anti-inflammatory properties. The various pro-inflammatory markers studied were Interleukin-6 (IL-6), Interleukin-8 (IL-8), Interleukin-1β (IL-1β) and Tumour Necrosis Factor-a (TNF-a). Additionally, molecular mechanics simulations were used to elucidate the positioning, energy minimization, and aqueous dispersion of the liposomal architecture involving lecithin and curcumin. The prepared curcumin formulation showed an average size and zeta potential of 271.3 ± 3.06 nm and -61.0 mV, respectively. The drug encapsulation efficiency of liposomal curcumin is 81.1%. Both curcumin-loaded liposomes formulation (1 μg/mL, 5 μg/mL) resulted in significant (p
Aim: In this study, curcumin was encapsulated in niosomes (Nio-Curc) to increase its effectiveness for the treatment of asthma. Materials & methods: The formulation underwent various physicochemical characterization experiments, an in vitro release study, molecular simulations and was evaluated for in vitro anti-inflammatory activity. Results: Results showed that Nio-Curc had a mean particle size of 284.93 ± 14.27 nm, zeta potential of -46.93 and encapsulation efficacy of 99.62%, which demonstrates optimized physicochemical characteristics. Curcumin release in vitro could be sustained for up to 24 h. Additionally, Nio-Curc effectively reduced mRNA transcript expression of pro-inflammatory markers; IL-6, IL-8, IL-1β and TNF-α in immortalized human airway basal cell line (BCi-NS1.1). Conclusion: In this study, we have demonstrated that Nio-Curc mitigated the mRNA expression of pro-inflammatory markers in an in vitro study, which could be applied to treatment of asthma with further studies.
Inflammatory responses play a remarkable role in the mechanisms of acute and chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis and lung cancer. Currently, there is a resurgence in the use of drugs from natural sources for various ailments as potent therapeutics. Berberine, an alkaloid prominent in the Chinese traditional system of medicine has been reported to exert therapeutic properties in various diseases. Nevertheless, the number of studies focusing on the curative potential of berberine in inflammatory diseases involving the respiratory system is limited. In this review, we have attempted to discuss the reported anti-inflammatory properties of berberine that function through several pathways such as, the NF-κB, ERK1/2 and p38 MAPK pathways which affect several pro-inflammatory cytokines in the pathophysiological processes involved in chronic respiratory diseases. This review would serve to provide valuable information to researchers who work in this field and a new direction in the field of drug discovery with respect to respiratory diseases.
The application of medicinal plants has captured the interest of researchers in recent times due to their potent therapeutic properties and a better safety profile. The prominent role of herbal products in treating and preventing multiple diseases dates back to ancient history and most of the modern drugs today originated from their significant sources owing to their ability to control multiple targets via different signalling pathways. Among them, flavonoids consist of a large group of polyphenols, which are well known for their various therapeutic benefits. Rutin is considered one of the attractive phytochemicals and important flavonoids in the pharmaceutical industry due to its diverse pharmacological activities via various underlying molecular mechanisms. It is usually prescribed for various disease conditions such as varicosities, haemorrhoids and internal haemorrhage. In this review, we have discussed and highlighted the different molecular mechanisms attributed to the various pharmacological activities of rutin, such as antioxidant, anti-inflammatory, anticancer, anti-allergic and antidiabetic. This review will be beneficial to herbal, biological and molecular scientists in understanding the pharmacological relevance of rutin at the molecular level.
Chronic obstructive pulmonary disease (COPD) is a life-threatening inflammatory respiratory disorder, often induced by cigarette smoke (CS) exposure. The development of effective therapies is impaired by a lack of understanding of the underlining mechanisms. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine with inflammatory and apoptotic properties. We interrogated a mouse model of CS-induced experimental COPD and human tissues to identify a novel role for TRAIL in COPD pathogenesis. CS exposure of wild-type mice increased TRAIL and its receptor messenger RNA (mRNA) expression and protein levels, as well as the number of TRAIL(+)CD11b(+) monocytes in the lung. TRAIL and its receptor mRNA were also increased in human COPD. CS-exposed TRAIL-deficient mice had decreased pulmonary inflammation, pro-inflammatory mediators, emphysema-like alveolar enlargement, and improved lung function. TRAIL-deficient mice also developed spontaneous small airway changes with increased epithelial cell thickness and collagen deposition, independent of CS exposure. Importantly, therapeutic neutralization of TRAIL, after the establishment of early-stage experimental COPD, reduced pulmonary inflammation, emphysema-like alveolar enlargement, and small airway changes. These data provide further evidence for TRAIL being a pivotal inflammatory factor in respiratory diseases, and the first preclinical evidence to suggest that therapeutic agents that target TRAIL may be effective in COPD therapy.
Chronic airway inflammatory diseases are characterized by persistent proinflammatory responses in the respiratory tract. Although, several treatment strategies are currently available, lifelong therapy is necessary for most of these diseases. In recent years, phytophenols, namely, flavonoids, derived from fruits and vegetables have been gaining tremendous interest and have been extensively studied due to their low toxicological profile. Naringenin is a bioflavonoid abundantly found in citrus fruits. This substance has shown notable therapeutic potential in various diseases due to its promising diverse biological activities. In this review, we have attempted to review the published studies from the available literature, discussing the molecular level mechanisms of naringenin in different experimental models of airway inflammatory diseases including asthma, chronic obstructive pulmonary disease (COPD), lung cancer, pulmonary fibrosis and cystic fibrosis. Current evidences have proposed that the anti-inflammatory properties of naringenin play a major role in ameliorating inflammatory disease states. In addition, naringenin also possesses several other biological properties. Despite the proposed mechanisms suggesting remarkable therapeutic benefits, the clinical use of naringenin is, however, hampered by its low solubility and bioavailability. Furthermore, this review also discusses on the studies that utilise nanocarriers as a drug delivery system to address the issue of poor solubility.