Displaying publications 1 - 20 of 64 in total

Abstract:
Sort:
  1. Khor YS, Wong PF
    Biogerontology, 2024 Feb;25(1):23-51.
    PMID: 37646881 DOI: 10.1007/s10522-023-10059-6
    FOXO3 is a member of the FOXO transcription factor family and is known for regulating cellular survival in response to stress caused by various external and biological stimuli. FOXO3 decides cell fate by modulating cellular senescence, apoptosis and autophagy by transcriptional regulation of genes involved in DNA damage response and oxidative stress resistance. These cellular processes are tightly regulated physiologically, with FOXO3 acting as the hub that integrates signalling networks controlling them. The activity of FOXO3 is influenced by post-translational modifications, altering its subcellular localisation. In addition, FOXO3 can also be regulated directly or indirectly by microRNAs (miRNAs) or vice versa. This review discusses the involvement of various miRNAs in FOXO3-driven cellular responses such as senescence, apoptosis, autophagy, redox and inflammation defence. Given that these responses are linked and influence cell fate, a thorough understanding of the complex regulation by miRNAs would provide key information for developing therapeutic strategy and avoid unintended consequences caused by off-site targeting of FOXO3.
  2. Noor SM, Wong CED, Wong PF, Norazit A
    Methods Cell Biol, 2024;181:17-32.
    PMID: 38302238 DOI: 10.1016/bs.mcb.2022.09.004
    Dopaminergic neurons in the brain are an important source of dopamine, which is a crucial neurotransmitter for wellbeing, memory, reward, and motor control. Deficiency of dopamine due to advanced age and accumulative dopaminergic neuron defects can lead to movement disorders such as Parkinson's disease. Glial cell-derived neurotrophic factor (GDNF) is one of many factors involved in dopaminergic neuron development and/or survival. However, other endogenous GDNF functions in the brain await further investigation. Zebrafish is a well-established genetic model for neurodevelopment and neurodegeneration studies. Importantly, zebrafish shares approximately 70% functional orthologs with human genes including GDNF. To gain a better understanding on the precise functional role of gdnf in dopaminergic neurons, our laboratory devised a targeted knockdown of gdnf in the zebrafish larval brain using vivo morpholino. Here, detailed protocols on the generation of gdnf morphants using vivo morpholino are outlined. This method can be applied for targeting of genes in the brain to determine specific spatiotemporal gene function in situ.
  3. Hipolith MM, Khor BK, Hirasawa Y, Murugaiyah V, Lee CY, Morita H, et al.
    Fitoterapia, 2023 Apr;166:105468.
    PMID: 36931528 DOI: 10.1016/j.fitote.2023.105468
    Benign prostate hyperplasia (BPH) is an enlargement of the prostate gland, because of hormonal changes in aging males which contribute significantly to excessive proliferation over apoptosis of prostatic cells. The anti-proliferative and induced apoptotic activities of Eurycoma longifolia quassinoids on cancer cell lines could be promising therapeutic targets on BPH. Hitherto, no report of the quassinoids against BPH problem was available. In this study, a systematic phytochemical fractionation of the root extract, TAF2 was performed, which led to the discovery of nine previously described C20 quassinoids (1-9). Two undescribed C20 (10 and 12) and one undescribed (11) C19 quassinoids were identified by detailed NMR and HR-ESI-MS data analysis. Their absolute configurations were assigned by ECD spectral analysis. The quassinoids (1-12) were tested for inhibitory activity against the proliferation of human BPH-1 and human skin Hs27 fibroblast cells cultured in vitro. 1, 2 and 3 at 10 μM significantly reduced BPH-1 cell viability and were cytotoxic to Hs27 fibroblast cells. 2 was selected for further study of anti-BPH activity against testosterone induced BPH rats. At 5 mg/kg, 2 reduced the rat prostatic weight and prostatic index, consistent with the decrease in papillary acini number and epithelial thickness of the prostate tissues. These quassinoids may be potential anti-BPH compounds that require further studies.
  4. Yap YJ, Wong PF, AbuBakar S, Sam SS, Shunmugarajoo A, Soh YH, et al.
    Clin Chim Acta, 2023 Feb 15;541:117243.
    PMID: 36740088 DOI: 10.1016/j.cca.2023.117243
    Macrophage activation and hypercytokinemia are notable presentations in certain viral infections leading to severe disease and poor prognosis. Viral infections can cause macrophage polarization into the pro-inflammatory M1 or anti-inflammatory M2 phenotype. Activated M1 macrophages usually restrict viral replication whereas activated M2 macrophages suppress inflammation and promote tissue repair. In response to inflammatory stimuli, macrophages polarize to the M2 phenotype expressing hemoglobin scavenger CD163 surface receptor. The CD163 receptor is shed as the soluble form, sCD163, into plasma or tissue fluids. sCD163 causes detoxification of pro-oxidative hemoglobin which produces anti-inflammatory metabolites that promote the resolution of inflammation. Hence, increased CD163 expression in tissues and elevated circulatory levels of sCD163 have been associated with acute and chronic inflammatory diseases. CD163 and other macrophage activation markers have been commonly included in the investigation of disease pathogenesis and progression. This review provides an overview of the involvement of CD163 in viral diseases. The clinical utility of CD163 in viral disease diagnosis, progression, prognosis and treatment evaluation is discussed.
  5. Wong PF, Dharmani M, Ramasamy TS
    Drug Discov Today, 2023 Jan;28(1):103424.
    PMID: 36332835 DOI: 10.1016/j.drudis.2022.103424
    Mesenchymal stem cells (MSCs) are susceptible to replicative senescence and senescence-associated functional decline, which hampers their use in regenerative medicine. Senotherapeutics are drugs that target cellular senescence through senolytic and senomorphic functions to induce apoptosis and suppress chronic inflammation caused by the senescence-associated secreted phenotype (SASP), respectively. Therefore, senotherapeutics could delay aging-associated degeneration. They could also be used to eliminate senescent MSCs during in vitro expansion or bioprocessing for transplantation. In this review, we discuss the role of senotherapeutics in MSC senescence, rejuvenation, and transplantation, with examples of some tested compounds in vitro. The prospects, challenges, and the way forward in clinical applications of senotherapeutics in cell-based therapeutics are also discussed.
  6. Wong LP, Alias H, Tan KM, Wong PF, Murugan DD, Hu Z, et al.
    Front Pharmacol, 2023;14:1254470.
    PMID: 37869747 DOI: 10.3389/fphar.2023.1254470
    Objective: The field of targeting cellular senescence with drug candidates to address age-related comorbidities has witnessed a notable surge of interest and research and development. This study aimed to gather valuable insights from pharmaceutical experts and healthcare practitioners regarding the potential and challenges of translating senolytic drugs for treatment of vascular aging-related disorders. Methods: This study employed a qualitative approach by conducting in-depth interviews with healthcare practitioners and pharmaceutical experts. Participants were selected through purposeful sampling. Thematic analysis was used to identify themes from the interview transcripts. Results: A total of six individuals were interviewed, with three being pharmaceutical experts and the remaining three healthcare practitioners. The significant global burden of cardiovascular diseases presents a potentially large market size that offer an opportunity for the development and marketability of novel senolytic drugs. The pharmaceutical sector demonstrates a positive inclination towards the commercialization of new senolytic drugs targeting vascular aging-related disorders. However potential important concerns have been raised, and these include increasing specificity toward senescent cells to prevent off-site targeting, thus ensuring the safety and efficacy of these drugs. In addition, novel senolytic therapy for vascular aging-related disorders may encounter competition from existing drugs that treat or manage risk factors of cardiovascular diseases. Healthcare practitioners are also in favor of recommending the novel senolytic drugs for vascular aging-related disorders but cautioned that its high cost may hinder its acceptance among patients. Besides sharing the same outcome-related concerns as with the pharmaceutical experts, healthcare practitioners anticipated a lack of awareness among the general public regarding the concept of targeting cellular senescence to delay vascular aging-related disorders, and this knowledge gap extends to healthcare practitioner themselves as well. Conclusion: Senolytic therapy for vascular aging-related disorders holds great promise, provided that crucial concerns surrounding its outcomes and commercial hurdles are effectively addressed.
  7. Beh HC, Wong PF, Chew BN, Chia YC
    PMID: 38111833 DOI: 10.51866/oa.3l4
    INTRODUCTION: The overall prevalence of hypertension is high, and many people are unaware of their condition. Screening campaigns can effectively identify this group of patients. The study aimed to determine the cost of manpower for a health campaign for detecting undiagnosed hypertension and the prevalence of hypertension.

    METHOD: This cross-sectional study was conducted at two health centres. Sociodemographic characteristics, hypertension and treatment statuses were recorded. Blood pressure (BP) was measured by either doctors or nurses using automated BP machines. The cost of manpower was calculated as the average salaries of manpower during the 3-day health campaign divided by the total number of days. The final sum was the cost of detecting undiagnosed hypertension.

    RESULTS: A total of 2009 participants median age = 50 (IQR = 18-91) were included in the study. The overall prevalence of hypertension was 41.4% (n=832). Among the patients with hypertension, 49.2% (n=409) were unaware of their hypertension status. Conversely, 21.1% (n=423) were known to have hypertension, among whom 97.4% (n=412) were on medications. Among those who were on medications, 49% (n=202) had good BP control. The average total cost of manpower during the 3-day health campaign was RM 5019.80 (USD 1059). The cost of detecting an individual with elevated BP was RM 12.27 (USD 2.59).

    CONCLUSION: The prevalence of hypertension and unawareness is high. However, the average cost of manpower to detect an individual with elevated BP is low. Therefore, regular public health campaigns aiming to detect undiagnosed hypertension are recommended.

  8. Tong KL, Tan KE, Lim YY, Tien XY, Wong PF
    Mol Cell Biochem, 2022 Dec;477(12):2703-2733.
    PMID: 35604519 DOI: 10.1007/s11010-022-04455-8
    Atherosclerosis is the major cause of coronary artery disease (CAD) which includes unstable angina, myocardial infarction, and heart failure. The onset of atherogenesis, a process of atherosclerotic lesion formation in the intima of arteries, is driven by lipid accumulation, a vicious cycle of reactive oxygen species (ROS)-induced oxidative stress and inflammatory reactions leading to endothelial cell (EC) dysfunction, vascular smooth muscle cell (VSMC) activation, and foam cell formation which further fuel plaque formation and destabilization. In recent years, there is a surge in the number of publications reporting the involvement of circular RNAs (circRNAs) in the pathogenesis of cardiovascular diseases, cancers, and metabolic syndromes. These studies have advanced our understanding on the biological functions of circRNAs. One of the most common mechanism of action of circRNAs reported is the sponging of microRNAs (miRNAs) by binding to the miRNAs response element (MRE), thereby indirectly increases the transcription of their target messenger RNAs (mRNAs). Individual networks of circRNA-miRNA-mRNA associated with atherogenesis have been extensively reported, however, there is a need to connect these findings for a complete overview. This review aims to provide an update on atherogenesis-related circRNAs and analyze the circRNA-miRNA-mRNA interactions in atherogenesis. The atherogenic mechanisms and clinical relevance of each atherogenesis-related circRNA were systematically discussed for better understanding of the knowledge gap in this area.
  9. Sawai S, Wong PF, Ramasamy TS
    Crit Rev Biochem Mol Biol, 2022 Aug;57(4):351-376.
    PMID: 35900938 DOI: 10.1080/10409238.2022.2088684
    Hypoxia is a common feature of the tumor microenvironment (TME) of nearly all solid tumors, leading to therapeutic failure. The changes in stiffness of the extracellular matrix (ECM), pH gradients, and chemical balance that contribute to multiple cancer hallmarks are closely regulated by intratumoral oxygen tension via its primary mediators, hypoxia-inducible factors (HIFs). HIFs, especially HIF-1α, influence these changes in the TME by regulating vital cancer-associated signaling pathways and cellular processes including MAPK/ERK, NF-κB, STAT3, PI3K/Akt, Wnt, p53, and glycolysis. Interestingly, research has revealed the involvement of epigenetic regulation by hypoxia-regulated microRNAs (HRMs) of downstream target genes involved in these signaling. Through literature search and analysis, we identified 48 HRMs that have a functional role in the regulation of 5 key cellular processes: proliferation, metabolism, survival, invasion and migration, and immunoregulation in various cancers in hypoxic condition. Among these HRMs, 17 were identified to be directly associated with HIFs which include miR-135b, miR-145, miR-155, miR-181a, miR-182, miR-210, miR-224, miR-301a, and miR-675-5p as oncomiRNAs, and miR-100-5p, miR-138, miR-138-5p, miR-153, miR-22, miR-338-3p, miR-519d-3p, and miR-548an as tumor suppressor miRNAs. These HRMs serve as a potential lead in the development of miRNA-based targeted therapy for advanced solid tumors. Future development of combined HIF-targeted and miRNA-targeted therapy is possible, which requires comprehensive profiling of HIFs-HRMs regulatory network, and improved formula of the delivery vehicles to enhance the therapeutic kinetics of the targeted cancer therapy (TCT) moving forward.
  10. Maeno H, Wong PF, AbuBakar S, Yang M, Sam SS, Jamil-Abd J, et al.
    Micromachines (Basel), 2021 Nov 30;12(12).
    PMID: 34945351 DOI: 10.3390/mi12121503
    Serum is commonly used as a specimen in immunoassays but the presence of heterophilic antibodies can potentially interfere with the test results. Previously, we have developed a microfluidic device called: 3D Stack for enzyme-linked immunosorbent assay (ELISA). However, its evaluation was limited to detection from a single protein solution. Here, we investigated the sensitivity of the 3D Stack in detecting a severe dengue biomarker-soluble CD163 (sCD163)-within the serum matrix. To determine potential interactions with serum matrix, a spike-and-recovery assay was performed, using 3D Stacks with and without surface modification by an EDC-NHS (N-ethyl-N'-(3-(dimethylamino)propyl)carbodiimide/N-hydroxysuccinimide) coupling. Without surface modification, a reduced analyte recovery in proportion to serum concentration was observed because of the Vroman effect, which resulted in competitive displacement of coated capture antibodies by serum proteins with stronger binding affinities. However, EDC-NHS coupling prevented antibody desorption and improved the sensitivity. Subsequent comparison of sCD163 detection using a 3D Stack with EDC-NHS coupling and conventional ELISA in dengue patients' sera revealed a high correlation (R = 0.9298, p < 0.0001) between the two detection platforms. Bland-Altman analysis further revealed insignificant systematic error between the mean differences of the two methods. These data suggest the potentials of the 3D Stack for further development as a detection platform.
  11. Murugan DD, Balan D, Wong PF
    Phytother Res, 2021 Nov;35(11):5936-5960.
    PMID: 34219306 DOI: 10.1002/ptr.7205
    Obesity is one of the most serious public health problems in both developed and developing countries in recent years. While lifestyle and diet modifications are the most important management strategies of obesity, these may be insufficient to ensure long-term weight reduction in certain individuals and alternative strategies including pharmacotherapy need to be considered. However, drugs option remains limited due to low efficacy and adverse effects associated with their use. Hence, identification of safe and effective alternative therapeutic agents remains warranted to combat obesity. In recent years, bioactive phytochemicals are considered as valuable sources for the discovery of new pharmacological agents for the treatment of obesity. Adipocyte hypertrophy and hyperplasia increases with obesity and undergo molecular and cellular alterations that can affect systemic metabolism giving rise to metabolic syndrome and comorbidities such as type 2 diabetes and cardiovascular diseases. Many phytochemicals have been reported to target adipocytes by inhibiting adipogenesis, inducing lipolysis, suppressing the differentiation of preadipocytes to mature adipocytes, reducing energy intake, and boosting energy expenditure mainly in vitro and in animal studies. Nevertheless, further high-quality studies are needed to firmly establish the clinical efficacy of these phytochemicals. This review outlines common pathways involved in adipogenesis and phytochemicals targeting effector molecules of these pathways, the challenges faced and the way forward for the development of phytochemicals as antiobesity agents.
  12. Khor ES, Noor SM, Wong PF
    Protoplasma, 2021 Aug 09.
    PMID: 34368895 DOI: 10.1007/s00709-021-01695-1
    MicroRNAs (miRNAs) play important roles in various biological processes. Our previous study showed that inhibition of MTOR with rapamycin treatment suppressed human endothelial cell tube formation, concomitant with the down-regulation of miR-107. Similarly, inhibition of Ztor by rapamycin also suppressed vascular development in zebrafish embryos. To gain a better understanding of the role of miR-107 and MTOR in vascular development, the present study sought to validate its function by over-expressing miR-107 in zebrafish embryos via microinjection with mimic miR-107 duplexes. Alkaline phosphatase (ALP) staining was used to visualise blood vessels in the zebrafish embryo, and expressions of Pten, Ztor and Rap1 were investigated by immunoblotting. Over-expression of miR-107 in zebrafish embryos inhibited the sprouting of intersegmental vessels (ISVs) with concomitant down-regulation of phosphorylated Rps6 expression, which confirmed the inhibition of Ztor signalling. As expected, pten, which is the target of miR-107, was down-regulated. Interestingly, Rap1, a small GTPase protein that is involved in intersomitic vessels sprouting during angiogenesis, was also down-regulated when miR-107 was over-expressed. Overall, our findings suggest that miR-107 and Ztor-mediated suppression of vascular development in zebrafish embryo involves Rap1.
  13. Ding CH, Wahab AA, Marina Z, Leong CL, Umur N, Wong PF
    Trop Biomed, 2021 Jun 01;38(2):119-121.
    PMID: 34172699 DOI: 10.47665/tb.38.2.045
    Nasopharyngeal diphtheria is an acute infectious upper respiratory tract disease caused by toxigenic strains of Corynebacterium diphtheriae. We report a case of a young adult who presented to us with a short history of fever, sore throat, hoarseness of voice and neck swelling. He claimed to have received all his childhood vaccinations and had no known medical illnesses. During laryngoscopy, a white slough (or membrane) was seen at the base of his tongue. The epiglottis was also bulky and the arytenoids were swollen bilaterally. The membrane was sent to the microbiology laboratory for culture. A diagnosis of nasopharyngeal diphtheria was made clinically and the patient was treated with an antitoxin together with erythromycin, while awaiting the culture result. Nevertheless, the patient's condition deteriorated swiftly and although the laboratory eventually confirmed an infection by toxin-producing C. diphtheriae, the patient had already succumbed to the infection.
  14. Tharumaraja T, Che-Ahmad A, Wong PF, Ahmad Hamid AH, Hasan MI, Bajuri MY, et al.
    Malays Fam Physician, 2021 Mar 25;16(1):103-113.
    PMID: 33948148 DOI: 10.51866/cpg0001
    Diabetic foot requires careful attention and coordinated management by a dedicated team. Screening, prevention, adequate assessment, and appropriate referral are crucial to prevent complications. Multimodal treatment and rehabilitation are recommended to ensure a better quality of life and reduction of amputation rate in people with diabetic foot.
  15. Tiong V, Loong SK, Mohamad Wali HA, Tan KK, Jee PF, Lim FS, et al.
    J Vet Med Sci, 2021 Mar 05;83(2):280-284.
    PMID: 33441499 DOI: 10.1292/jvms.20-0070
    Corneal lesions appearing as white mass beneath intact epithelium, with ocular discharge in one mouse, was observed in a batch of laboratory-raised BALB/c mice (n=9 of 56). The affected mice remained active, well-groomed and had normal appetite. Isolates recovered from swab cultures of the external and internal contents of the eye had partial 16S rRNA gene sequence of 99.1% similarity to Streptococcus cuniculi. No previous report of S. cuniculi infection in laboratory rodents has been presented. The isolate was susceptible to all antibiotics tested. We suggest S. cuniculi is an opportunistic bacteria in laboratory mice but are uncertain of its source. Our findings revealed that S. cuniculi is able to colonize laboratory mice and should be considered when mice present with eye lesion or ocular discharge.
  16. Chia YC, Devaraj NK, Ching SM, Ooi PB, Chew MT, Chew BN, et al.
    J Clin Hypertens (Greenwich), 2021 03;23(3):638-645.
    PMID: 33586334 DOI: 10.1111/jch.14212
    This study aimed to examine the relationship of adherence with blood pressure (BP) control and its associated factors in hypertensive patients. This cross-sectional nationwide BP screening study was conducted in Malaysia from May to October 2018. Participants with self-declared hypertension completed the Hill-Bone Compliance to High Blood Pressure Therapy Scale (Hill-Bone CHBPTS) which assesses three important domains of patient behavior to hypertension management namely medication taking, appointment keeping and reduced salt intake. Lower scores indicate better compliance while higher scores indicate otherwise. Participant's body mass index and seated BP were measured based on standard measurement protocol. Determinants of adherence to treatment were analyzed using multiple linear regression. Out of 5167 screened subjects, 1705 were known hypertensives. Of these, 927 (54.4%) answered the Hill-Bone CHBPTS and were entered into analysis. The mean age was 59.0 ± 13.2 years, 55.6% were female and 42.2% were Malays. The mean Hill-Bone CHBPTS score was 20.4 ± 4.4 (range 14-47), and 52.1% had good adherence. The mean systolic BP and diastolic BP were 136.4 ± 17.9 and 80.6 ± 11.6 mmHg, respectively. BP was controlled in 58.3% of those with good adherence compared to 50.2% in those with poor adherence (p = .014). Based on multiple linear regression analysis, female gender (β = -0.72, 95% confidence interval [CI] -1.30, -0.15, p = .014), older age (β = -0.05, 95% CI -0.07, -0.03, p 
  17. Khor ES, Wong PF
    Biogerontology, 2020 10;21(5):517-530.
    PMID: 32246301 DOI: 10.1007/s10522-020-09876-w
    Accumulation of senescent cells in vascular endothelium is known to contribute to vascular aging and increases the risk of developing cardiovascular diseases. The involvement of classical pathways such as p53/p21 and p16/pRB in cellular senescence are well described but there are emerging evidence supporting the increasingly important role of mammalian target of rapamycin (MTOR) as driver of cellular senescence via these pathways or other effector molecules. MicroRNAs (miRNAs) are a highly conserved group of small non-coding RNAs (18-25 nucleotides), instrumental in modulating the expression of target genes associated with various biological and cellular processes including cellular senescence. The inhibition of MTOR activity is predominantly linked to cellular senescence blunting and prolonged lifespan in model organisms. To date, known miRNAs regulating MTOR in endothelial cell senescence remain limited. Herein, this review discusses the roles of MTOR and MTOR-associated miRNAs in regulating endothelial cell senescence, including the crosstalk between MTOR Complex 1 (MTORC1) and cell cycle pathways and the emerging role of MTORC2 in cellular senescence. New insights on how MTOR and miRNAs coordinate underlying molecular mechanisms of endothelial senescence will provide deeper understanding and clarity to the complexity of the regulation of cellular senescence.
  18. Wong LP, Alias H, Wong PF, Lee HY, AbuBakar S
    Hum Vaccin Immunother, 2020 09 01;16(9):2204-2214.
    PMID: 32730103 DOI: 10.1080/21645515.2020.1790279
    BACKGROUND: The development of a vaccine against SARS-CoV-2 infection is on the way. To prepare for public availability, the acceptability of a hypothetical COVID-19 vaccine and willingness to pay (WTP) were assessed to provide insights into future demand forecasts and pricing considerations.

    METHODS: A cross-sectional survey was conducted from 3 to 12 April 2020. The health belief model (HBM) was used to assess predictors of the intent to receive the vaccine and the WTP.

    RESULTS: A total of 1,159 complete responses was received. The majority reported a definite intent to receive the vaccine (48.2%), followed by a probable intent (29.8%) and a possible intent (16.3%). Both items under the perceived benefits construct in the HBM, namely believe the vaccination decreases the chance of infection (OR = 2.51, 95% CI 1.19-5.26) and the vaccination makes them feel less worry (OR = 2.19, 95% CI 1.03-4.65), were found to have the highest significant odds of a definite intention to take the vaccine. The mean ± standard deviation (SD) for the amount that participants were willing to pay for a dose of COVID-19 vaccine was MYR$134.0 (SD±79.2) [US$30.66 ± 18.12]. Most of the participants were willing to pay an amount of MYR$100 [US$23] (28.9%) and MYR$50 [US$11.5] (27.2%) for the vaccine. The higher marginal WTP for the vaccine was influenced by no affordability barriers as well as by socio-economic factors, such as higher education levels, professional and managerial occupations and higher incomes.

    CONCLUSIONS: The findings demonstrate the utility of HBM constructs in understanding COVID-19 vaccination intention and WTP.

  19. Jamal J, Roebuck MM, Lee SY, Frostick SP, Abbas AA, Merican AM, et al.
    Int J Biochem Cell Biol, 2020 09;126:105800.
    PMID: 32673644 DOI: 10.1016/j.biocel.2020.105800
    OBJECTIVES: To compare mechanobiological response of synovial fibroblasts (SFb) from OA patient cohorts under mechanical load and inflammatory stressors for better understanding of SFb homeostatic functions.

    METHODS: Primary SFb isolated from knee synovium of OA obese (OA-ob:SFb), OA-pre-obese (OA-Pob:SFb), non-OA arthroscopic (scope:SFb), and non-OA arthroscopic with cartilage damage (scope-CD:SFb) were exposed to OA-conditioned media (OACM), derived from OA obese (OA-ob:CM), OA-pre-obese (OA-Pob:CM), and mechanical stretch at either 0 %, 6 % or 10 % for 24 h. Differences in the mRNA levels of genes involved in extracellular matrix production, inflammation and secretory activity were measured.

    RESULTS: Despite the significant BMI differences between the OA-ob and OA-Pob groups, OA-Pob has more patients with underlying dyslipidaemia, and low-grade synovitis with higher levels of secreted proteins, CXCL8, COL4A1, CCL4, SPARC and FGF2 in OA-Pob:CM. All primary SFb exhibited anti-proliferative activity with both OA-CM. Mechanical stretch stimulated lubricin production in scope:SFb, higher TGFβ1 and COL1A1 expressions in scope-CD:SFb. OA-Pob:CM stimulated greater detrimental effects than the OA-ob:CM, with higher pro-inflammatory cytokines, IL1β, IL6, COX2 and proteases such as aggrecanases, ADAMTS4 and ADAMTS5, and lower ECM matrix, COL1A1 expressions in all SFb. OA-ob:SFb were unresponsive but expressed higher pro-inflammatory cytokines under OA-Pob:CM treatment.

    CONCLUSION: Both mechanical and inflammatory stressors regulate SFb molecular functions with heterogeneity in responses that are dependent on their pathological tissue of origins. While mechanical stretch promotes a favorable effect with enhanced lubricin production in scope:SFb and TGFβ1 and COL1A1 in scope-CD:SFb, the presence of excessively high OA-associated inflammatory mediators in OA-Pob:CM, predominantly SPARC, CXCL8 and FGF2 drive all SFb regardless of pathology, towards greater pro-inflammatory activities.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links