The structural component of fungal cell walls comprises of chitin covalently bonded to glucan; this constitutes a native composite material (chitin-glucan, CG) combining the strength of chitin and the toughness of glucan. It has a native nano-fibrous structure in contrast to nanocellulose, for which further nanofibrillation is required. Nanopapers can be manufactured from fungal chitin nanofibrils (FChNFs). FChNF nanopapers are potentially applicable in packaging films, composites, or membranes for water treatment due to their distinct surface properties inherited from the composition of chitin and glucan. Here, chitin-glucan nanofibrils were extracted from common mushroom (Agaricus bisporus) cell walls utilizing a mild isolation procedure to preserve the native quality of the chitin-glucan complex. These extracts were readily disintegrated into nanofibre dimensions by a low-energy mechanical blending, thus making the extract dispersion directly suitable for nanopaper preparation using a simple vacuum filtration process. Chitin-glucan nanopaper morphology, mechanical, chemical, and surface properties were studied and compared to chitin nanopapers of crustacean (Cancer pagurus) origin. It was found that fungal extract nanopapers had distinct physico-chemical surface properties, being more hydrophobic than crustacean chitin.
Mushroom cultivation has been more popular recently in Malaysia. They are favoured due to their delicious flavour and low calorific value. Apart from that, they also contain high amount of protein and other essential nutrients. As recommended by food pyramid, people should take in more of their calories from whole grains-based foods than any other sources. Three selected carbohydrate based products namely rice-porridge (RP), paratha flat bread (PB) and conventional cake (CC) were formulated with dried Pleurotus sajor-caju (PSC) powder. All three products were analyzed for proximate analysis and sensory evaluation. Result shows the percentage of moisture, ash, fat and protein of RP increased in line with the levels of PSC powder used except for carbohydrate. Whereas for PB and CCs added with 2%, 4% and 6% PSC, the percentage of all nutrients were higher than control (0%) except for fat. Mushroombased RP had significantly higher value of odour attribute as compared to control, with RP added with 6% PSC powder received the highest score. Meanwhile, mushroom-based PB received better score on textural attribute compared the control. In CC, panels prefer the cake added with 4% PSC powder as they gave higher scores for softness and flavour attributes. In conclusion, addition of PSC powder to partially replace rice and wheat flour in RP, CC and PB enhance essential nutritional components and well accepted by consumers. Thus, PSC powder can be considered to be utilized in carbohydrate–based food products with the purpose of enhancing nutrient compositions without affecting its sensory acceptance.
Consumption of mushroom has increased remarkably because of their desirable aroma, taste and high nutritional content. This study was undertaken to measure and compare the antioxidant activity, total phenolic content (TPC) and total flavonoid content (TFC) of Agaricus bisporous (white button mushroom) and Agaricus brasiliensis (Brazilian mushroom) in aqueous and 60% ethanol extract. Results showed that button mushroom (21.47 ± 0.48 mg GAE/g of dry weight) had significant higher TPC in aqueous whereas Brazilian mushroom (12.50 ± 0.22 mg GAE/g of dry weight) had significant higher TPC in 60% ethanol (p< 0.05). In terms of TFC, Brazilian mushroom had higher content than button mushroom in both types of solvents. For FRAP assay, Brazilian mushroom had significantly higher total antioxidant activity than the button mushroom in 60% ethanol (p < 0.05) but opposite trend with aqueous. For DPPH radical scavenging activity, Brazilian mushroom (60% ethanol) had the lowest EC50 value, followed by button mushroom (60% ethanol), Brazilian mushroom (aqueous) and button mushroom (aqueous). Pearson correlation test (p < 0.05) showed strong positive correlation between TPC and FRAP assay in both extracts (r = 0.969 for 60% ethanol extract; r = 0.973 for aqueous extract). For TFC, there was a strong positive, correlation with FRAP assay (r = 0.985) in aqueous extract. In conclusion, high antioxidant activity in ethanol extract of mushrooms due to presence of phenolic content can potentially be used as a source of natural antioxidants.
This study aimed to investigate the effect of in vitro digestion on the antioxidant activity and carbohydrate-digestive enzymes inhibitory potential of five edible mushrooms after subjected to four domestic cooking; namely, boiling, microwaving, steaming and pressure-cooking. The water extracts of raw (uncooked), cooked and in vitro digested mushrooms were compared for their water-soluble phenolic content (WPC), total flavonoid content (TFC), ferric reducing antioxidant power (FRAP), radical scavenging activity (TEAC and DPPH), anti-α-amylase and anti-α-glucosidase activities. Among the raw samples, Lentinula edodes possessed the highest antioxidant activities (FRAP, TEAC, DPPH) and WPC while Pleurotus sajor-caju displayed the highest TFC, anti-α-amylase and anti-α-glucosidase activities. The antioxidant and carbohydrate-digestive enzyme inhibitory activities significantly varied according to mushroom species and cooking methods applied. Short duration of microwaving (Agaricus bisporus and Flammulina velutipes), boiling (Auricularia polytricha) and pressure cooking (L. edodes and P. sajor-caju) yielded the best antioxidant and carbohydrate-digestive enzymes inhibition values in the mushroom extracts. TFC was positively correlated with the antioxidant activities and anti-α-glucosidase activity in the mushroom extracts. In vitro digestion significantly improved the total antioxidant and anti-α-glucosidase activities but decreased the anti-α-amylase activity in the cooked mushroom extracts. Principle component analysis showed that in vitro digestion and the cooking process accounted for respective 48.9% and 19.7% of variation in the observed activities. Domestic cooking and in vitro digestion could potentiate the total antioxidant and carbohydrate-digestive enzymes inhibitory activities in the selected water extract of edible mushrooms.
Microwave vacuum pyrolysis of palm kernel shell (PKS) was performed to produce biochar, which was then tested as bio-fertilizer in growing Oyster mushroom (Pleurotus ostreatus). The pyrolysis approach produced biochar containing a highly porous structure with a high BET surface area of up to 270m2/g and low moisture content (≤10wt%), exhibiting desirable adsorption properties to be used as bio-fertilizer since it can act as a housing that provides many sites on which living microorganisms (mycelium or plant-growth promoting bacteria) and organic nutrients can be attached or adsorbed onto. This could in turn stimulate plant growth by increasing the availability and supply of nutrients to the targeted host plant. The results from growing Oyster mushroom using the biochar recorded an impressive growth rate and a monthly production of up to about 550g of mushroom. A shorter time for mycelium growth on one whole baglog (21days) and the highest yield of Oyster mushroom (550g) were obtained from cultivation medium added with 20g of biochar. Our results demonstrate that the biochar-based bio-fertilizer produced from microwave vacuum pyrolysis of PKS shows exceptional promise as growth promoting material for mushroom cultivation.
Angiotensin I-converting enzyme (ACE) inhibitors derived from foods are valuable auxiliaries to agents such as captopril. Eight highly functional ACE inhibitory peptides from the mushroom, Agaricus bisporus, were identified by LC-MS/MS. Among these peptides, the most potent ACE inhibitory activity was exhibited by AHEPVK, RIGLF and PSSNK with IC₅₀ values of 63, 116 and 129 μM, respectively. These peptides exhibited high ACE inhibitory activity after gastrointestinal digestion. Lineweaver-Burk plots suggested that AHEPVK and RIGLF act as competitive inhibitors against ACE, whereas PSSNK acts as a non-competitive inhibitor. Mushrooms can be a good component of dietary supplement due to their readily available source and, in addition, they rarely cause food allergy. Compared to ACE inhibitory peptides isolated from other edible mushrooms, AHEPVK, RIGLF and PSSNK have lower IC₅₀ values. Therefore, these peptides may serve as an ideal ingredient in the production of antihypertensive supplements.
Mushrooms are high in protein content, which makes them potentially a good source of antihypertensive peptides. Among the mushrooms tested, protein extracts from Pleurotus cystidiosus (E1Pc and E5Pc) and Agaricus bisporus (E1Ab and E3Ab) had high levels of antihypertensive activity. The protein extracts were fractionated by reverse-phase high-performance liquid chromatography (RPHPLC) into six fractions. Fraction 3 from E5Pc (E5PcF3) and fraction 6 from E3Ab (E3AbF6) had the highest antihypertensive activities. SDS-PAGE analysis showed E5PcF3 consisted mainly of low molecular weight proteins, whereas E3AbF6 contained a variety of high to low molecular weight proteins. There were 22 protein clusters detected by SELDI-TOF-MS analysis with five common peaks found in E5PcF3 and E3AbF6, which had m/z values in the range of 3940-11413. This study suggests that the antihypertensive activity in the two mushroom species could be due to proteins with molecular masses ranging from 3 to 10 kDa.
Depression is the most common form of mental illness and the major cause of disability worldwide. Symptoms of depression, including feelings of intense sadness and hopelessness, may occur after a specific event or in response to a gradual decline in health and functional status, often associated with aging. Current therapies for treating these symptoms include antidepressant drugs, counseling and behavioral therapy. However, antidepressant drugs are associated with mild to severe adverse effects, which has prompted the need for better treatment options. Medicinal mushrooms are valuable sources of food and medicine and are increasingly being used as supplements or as alternative medicines in standard healthcare. Numerous studies have provided insights into the neuroprotective effects of medicinal mushrooms, which are attributed to their antioxidant, anti-neuroinflammatory, cholinesterase inhibitory and neuroprotective properties. In this review, we comprehensively examine the role of these medicinal mushrooms in the treatment of depression. However, to apply these natural products in clinical settings, the therapeutic agent needs to be properly evaluated, including the active ingredients, the presence of synergistic effects, efficient extraction methods, and stabilization of the active ingredients for delivery into the body as well as crossing the blood-brain barrier.
Mushroom cultivation benefits humankind as it deliberately encourages wild mushrooms to be commercially propagated while recycling agricultural wastes. Ganoderma neo-japonicum is a rare polypore mushroom found growing on decaying Schizostachyum brachycladium (a tropical bamboo) clumps in Malaysia. The Malaysian indigenous tribes including the Temuans and Temiars use the basidiocarps of G. neo-japonicum to treat various ailments including diabetes. In this study, the domestication of G. neo-japonicum in artificial logs of different agricultural residues was investigated. Sawdust promoted the mycelia spawn colonisation in the shortest period of 38 ± 0.5 days. However, only sawdust and bamboo dust supported the primodia formation. Complex medium supported mycelium growth in submerged cultures and 27.11 ± 0.43 g/L of mycelia was obtained after 2 weeks of cultivation at 28 °C and 200 rpm. Antioxidant potential in mushroom may be influenced by different cultivation and extraction methods. The different extracts from the wild and cultivated basidiocarps as well as mycelia were then tested for their antioxidant properties. Aqueous and ethanol extracts of mycelia and basidiocarps tested had varying levels of antioxidant activities. To conclude, domestication of wild G. neo-japonicum using agroresidues may ensure a continuous supply of G. neo-japonicum for its medicinal use while ensuring the conservation of this rare species.
Mushrooms have been consumed by mankind for millennia. In Malaysia, there are many species of edible mushrooms which are either cultivated (Agaricus spp., Auricularia spp., Pleurotus spp.) or harvested in the wild (Ganoderma spp., Polyporus spp., Termitomyces spp.). With the advancement of technology, numerous discoveries have been made that elucidated the nutritional (high in fibres, proteins, vitamins; low in fats, cholesterols, sodium) and medicinal (anti-oxidative, anti-hypertensive, neuritogenesis) properties of edible mushrooms, all of which are highly beneficial for the maintenance of human health and well-being. This review thus compiles and documents the available literatures on edible mushrooms reported from Malaysia complete with scientific, English, and vernacular names for future references; provides a comprehensive and updated overview on the nutritional and medicinal properties edible mushrooms reported from Malaysia; and identifies the research gaps to promote further research and development on edible mushrooms reported from Malaysia. Overall, Malaysia is and remains a natural repository for wild and cultivated edible mushrooms. Deeper investigation on their nutritional and medicinal properties will certainly serve as an impetus for economic as well as scientific progress.
This study aimed to investigate the effect of four cooking methods with different durations on the in vitro antioxidant activities of five edible mushrooms, namely Agaricus bisporus, Flammulina velutipes, Lentinula edodes, Pleurotus ostreatus and Pleurotus eryngii. Among the raw samples, A. bisporus showed the highest total antioxidant activity (reducing power and radical scavenging), total flavonoid, ascorbic acid and water soluble phenolic contents. Short-duration steam cooking (3 min) increased the total flavonoid and ascorbic acid while prolonged pressure cooking (15 min) reduced the water soluble phenolic content in the mushrooms. The retention of antioxidant value in the mushrooms varied with the variety of mushroom after the cooking process. The cooking duration significantly affected the ascorbic acid in the mushrooms regardless of cooking method. To achieve the best antioxidant values, steam cooking was preferred for F. velutipes (1.5 min), P. ostreatus (4.5 min) and L. edodes (4.5 min) while microwave cooking for 1.5 min was a better choice for A. bisporus. Pressure cooked P. eryngii showed the best overall antioxidant value among the cooked samples. Optimised cooking method including pressure cooking could increase the antioxidant values in the edible mushrooms.
Five culinary-medicinal mushrooms are commonly available in the Malaysian market: Agaricus bisporus (white and brown), Ganoderma lucidum, Hypsizygus marmoreus, Pleurotus floridanus, and P. pulmonarius. These species were selected for use in the current study, the aim of which was to investigate the antimelanogenesis and anti-inflammatory activity of these mushrooms in an attempt to evaluate their potential use in cosmeceuticals. Mushroom fruiting bodies were extracted with hot water, and the extracts were freeze-dried before testing. The antimelanogenesis activity of the extracts was determined by cell viability assay, measurement of intracellular melanin content, and cellular tyrosinase assay with B16F10 melanoma cells. The anti-inflammatory activity of the mushroom extracts was tested by measuring the levels of nitric oxide (NO), tumor necrosis factor (TNF)-α, and interleukin-10 excreted by RAW264.7 macrophages. Brown A. bisporus reduced intracellular melanin content to the largest extent-up to 57.05 ± 3.90%-without a cytotoxic effect on B16F10 melanoma cells. This extract also reduced cellular tyrosinase activity to 17.93 ± 2.65%, performing better than kojic acid, the positive control. In parallel, the extract from brown A. bisporus, at the highest concentration tested, has appreciable anti-inflammatory activity through reductions of NO and TNF-α levels. The other 5 extracts showed moderate antimelanogenesis and anti-inflammatory activities. In summary, our findings show that A. bisporus (brown) extract has the potential to be used as an ingredient in whitening skincare products and to sooth the inflammatory response on the skin.
The second most predominant cancer in the world and the first among women is breast cancer. We aimed to study the protein abundance profiles induced by lectin purified from the Agaricus bisporus mushroom (ABL) and conjugated with CaCO3NPs in the MCF-7 breast cancer cell line. Two-dimensional electrophoresis (2-DE) and orbitrap mass spectrometry techniques were used to reveal the protein abundance pattern induced by lectin. Flow cytometric analysis showed the accumulation of ABL-CaCO3NPs treated cells in the G1 phase than the positive control. Thirteen proteins were found different in their abundance in breast cancer cells after 24 h exposure to lectin conjugated with CaCO3NPs. Most of the identified proteins were showing a low abundance in ABL-CaCO3NPs treated cells in comparison to the positive and negative controls, including V-set and immunoglobulin domain, serum albumin, actin cytoplasmic 1, triosephosphate isomerase, tropomyosin alpha-4 chain, and endoplasmic reticulum chaperone BiP. Hornerin, tropomyosin alpha-1 chain, annexin A2, and protein disulfide-isomerase were up-regulated in comparison to the positive. Bioinformatic analyses revealed the regulation changes of these proteins mainly affected the pathways of 'Bcl-2-associated athanogene 2 signalling pathway', 'Unfolded protein response', 'Caveolar-mediated endocytosis signalling', 'Clathrin-mediated endocytosis signalling', 'Calcium signalling' and 'Sucrose degradation V', which are associated with breast cancer. We concluded that lectin altered the abundance in molecular chaperones/heat shock proteins, cytoskeletal, and metabolic proteins. Additionally, lectin induced a low abundance of MCF-7 cancer cell proteins in comparison to the positive and negative controls, including; V-set and immunoglobulin domain, serum albumin, actin cytoplasmic 1, triosephosphate isomerase, tropomyosin alpha-4 chain, and endoplasmic reticulum chaperone BiP.