Displaying publications 1 - 20 of 77 in total

Abstract:
Sort:
  1. Wan-Hamat H, Lani MN, Hamzah Y, Alias R, Hassan Z, Mahat NA
    Trop Biomed, 2020 Mar 01;37(1):103-115.
    PMID: 33612722
    The microbiological quality of thirty ready-to-eat (RTE) keropok lekor (a sausage shape Malaysian fish product) was evaluated in comparison to microbiological guidelines for ready to eat foods. The two E. coli isolates were subjected to DNA sequencing, identified and tested for their resistance towards fifteen different antibiotics. The survival and growth of the isolated E. coli strains inoculated in keropok lekor at atmospheric air and vacuum packaging were also evaluated. Results revealed that four samples (13.33%) contained Enterobacteriaceae counts that exceeded the recommended allowable counts of 4.0 log10 CFU/g. Unsatisfactory level of coliforms (< 1.7 log10 CFU/g) was also observed in ten of the samples; two of which contained E. coli (2.1 ± 0.17 and 3.7 ± 0.02 log10 CFU/g), suggesting of poor hygiene and sanitation practices. While the 'Possible E10' E. coli strain was observably resistant towards Nalidixic acid (30µg) alone, B10 E. coli isolate was worryingly resistant towards Ampicillin (10µg), Ceftazidime (30µg), Ciprofloxacin (5µg), Ceftriaxone (30µg), Nalidixic acid (30µg) and Tetracycline (30µg). This study also revealed that the growth and survival of the 'Possible E10' and B10 E. coli strains were not significantly affected by vacuum packaging when stored at both 4°C and 28°C. Therefore, intervention programmes to alert and educate smallmedium enterprisers (SMEs) of keropok lekor producers on food safety as well as potential health risks that can be associated due to inappropriate handling procedures of such product, merits consideration.
    Matched MeSH terms: Atmosphere
  2. Nakamura A, Kitching RL, Cao M, Creedy TJ, Fayle TM, Freiberg M, et al.
    Trends Ecol Evol, 2017 06;32(6):438-451.
    PMID: 28359572 DOI: 10.1016/j.tree.2017.02.020
    Forest canopies are dynamic interfaces between organisms and atmosphere, providing buffered microclimates and complex microhabitats. Canopies form vertically stratified ecosystems interconnected with other strata. Some forest biodiversity patterns and food webs have been documented and measurements of ecophysiology and biogeochemical cycling have allowed analyses of large-scale transfer of CO2, water, and trace gases between forests and the atmosphere. However, many knowledge gaps remain. With global research networks and databases, and new technologies and infrastructure, we envisage rapid advances in our understanding of the mechanisms that drive the spatial and temporal dynamics of forests and their canopies. Such understanding is vital for the successful management and conservation of global forests and the ecosystem services they provide to the world.
    Matched MeSH terms: Atmosphere
  3. Tan CK, Ali ZM, Ismail I, Zainal Z
    ScientificWorldJournal, 2012;2012:474801.
    PMID: 22919322 DOI: 10.1100/2012/474801
    The objective of the present study was to simultaneously evaluate the effect of a postharvest treatment on the pepper's antioxidant content and its ability to retain its economical value during the postharvest period. The fruits were pretreated by modified atmosphere packaging (MAP) with or without treatment with 1-methylcyclopropene (1-MCP) before cold storage at 10°C. Changes in the levels of non-enzymatic antioxidants, including the total phenolic, ascorbic acid levels and the total glutathione level, as well as enzymatic antioxidants, including ascorbate peroxidase (APX), glutathione reductase (GR), and catalase (CAT), were determined. Both treatments successfully extended the shelf life of the fruit for up to 25 days, and a high level of antioxidant capacity was maintained throughout the storage period. However, 1-MCP treatment maintained the high antioxidant capacity for a longer period of time. The 1-MCP-treated peppers maintained high levels of phenolic content, a high reduced glutathione (GSH)/oxidised glutathione (GSSG) ratio, decreased levels of ascorbic acid and CAT activity, and increased levels of APX and GR compared with the peppers that were not treated with 1-MCP. The overall results suggested that a combination of 1-MCP and MAP was the most effective treatment for extending shelf life while retaining the nutritional benefits.
    Matched MeSH terms: Atmosphere
  4. Lange E, Lozano AI, Jones NC, Hoffmann SV, Kumar S, Śmiałek MA, et al.
    J Phys Chem A, 2020 Sep 30.
    PMID: 32941031 DOI: 10.1021/acs.jpca.0c06615
    We investigate the methanol absorption spectrum in the range 5.5-10.8 eV to provide accurate and absolute cross-sections values. The main goal of this study is to provide a comprehensive analysis of methanol electronic-state spectroscopy by employing high-resolution vacuum ultraviolet (VUV) photoabsorption measurements together with state-of-the-art quantum chemical calculation methods. The VUV spectrum reveals several new features that are not previously reported in literature, for n > 3 in the transitions (nsσ(a') ← (2a″)) (1A' ← X̃1A') and (nsσ, npσ, npσ', ndσ ← (7a')) (1A' ← X̃1A'), and with particular relevance to vibrational progressions of the CH3 rocking mode, v11'(a″), mode in the (3pπ(a″) ← (2a″)) (21A' ← X̃1A') absorption band at 8.318 eV. The measured absolute photoabsorption cross-sections have subsequently been used to calculate the photolysis lifetime of methanol in the Earth's atmosphere from the ground level up to the limit of the stratosphere (50 km altitude). This shows that solar photolysis plays a negligible role in the removal of methanol from the lower atmosphere compared with competing sink mechanisms. Torsional potential energy scans, as a function of the internal rotation angle for the ground and first Rydberg states, have also been calculated as part of this investigation.
    Matched MeSH terms: Atmosphere
  5. Padmanabhan E, Eswaran H, Reich PF
    Sci Total Environ, 2013 Nov 1;465:196-204.
    PMID: 23541401 DOI: 10.1016/j.scitotenv.2013.03.024
    The relationship between greenhouse gas emission and climate change has led to research to identify and manage the natural sources and sinks of the gases. CO2, CH4, and N2O have an anthropic source and of these CO2 is the least effective in trapping long wave radiation. Soil carbon sequestration can best be described as a process of removing carbon dioxide from the atmosphere and relocating into soils in a form that is not readily released back into the atmosphere. The purpose of this study is to estimate carbon stocks available under current conditions in Sarawak, Malaysia. SOC estimates are made for a standard depth of 100 cm unless the soil by definition is less than this depth, as in the case of lithic subgroups. Among the mineral soils, Inceptisols tend to generally have the highest carbon contents (about 25 kg m(-2) m(-1)), while Oxisols and Ultisols rate second (about 10-15 kg m(-2) m(-1)). The Oxisols store a good amount of carbon because of an appreciable time-frame to sequester carbon and possibly lower decomposition rates for the organic carbon that is found at 1m depths. Wet soils such as peatlands tend to store significant amounts of carbon. The highest values estimated for such soils are about 114 kg m(-2) m(-1). Such appreciable amounts can also be found in the Aquepts. In conclusion, it is pertinent to recognize that degradation of the carbon pool, just like desertification, is a real process and that this irreversible process must be addressed immediately. Therefore, appropriate soil management practices should be instituted to sequester large masses of soil carbon on an annual basis. This knowledge can be used effectively to formulate strategies to prevent forest fires and clearing: two processes that can quickly release sequestered carbon to the atmosphere in an almost irreversible manner.
    Matched MeSH terms: Atmosphere
  6. Lai SO, Huang J, Hopke PK, Holsen TM
    Sci Total Environ, 2011 Mar 1;409(7):1320-7.
    PMID: 21257194 DOI: 10.1016/j.scitotenv.2010.12.032
    In this project, several surrogate surfaces designed to directly measure Hg dry deposition were investigated. Static water surrogate surfaces (SWSS) containing deionized (DI), acidified water, or salt solutions, and a knife-edge surrogate surface (KSS) using quartz fiber filters (QFF), KCl-coated QFF and gold-coated QFF were evaluated as a means to directly measure mercury (Hg) dry deposition. The SWSS was hypothesized to collect deposited elemental mercury (Hg⁰), reactive gaseous/oxidized mercury (RGM), and mercury associated with particulate matter (Hg(p)) while the QFF, KCl-coated QFF, and gold-coated QFF on the KSS were hypothesized to collect Hg(p), RGM+Hg(p), and Hg⁰+RGM+Hg(p), respectively. The Hg flux measured by the DI water was significantly smaller than that captured by the acidified water, probably because Hg⁰ was oxidized to Hg²+ which stabilized the deposited Hg and decreased mass transfer resistance. Acidified BrCl, which efficiently oxidizes Hg⁰, captured significantly more Hg than other solutions. However, of all collection media, gold-coated QFFs captured 6 to 100 times greater Hg mass than the other surfaces, probably because there is no surface resistance for Hg⁰ deposition to gold surfaces. In addition, the Hg⁰ concentration is usually 100-1000 times higher than RGM and Hg(p). For all other media, co-located samples were not significantly different, and the combination of daytime plus nighttime results were comparable to 24-h samples, implying that Hg⁰, RGM and Hg(p) were not released after they deposited nor did the surfaces reach equilibrium with the atmosphere. Based on measured Hg ambient air concentrations and fluxes, dry deposition velocities of RGM and Hg⁰ to DI water and other surfaces were 5.6±5.4 and 0.005-0.68 cm s⁻¹ in this study, respectively. These results suggest surrogate surfaces can be used to measure Hg dry deposition; however, extrapolating the results to natural surface can be challenging.
    Matched MeSH terms: Atmosphere/chemistry
  7. Zhou F, Cui J, Zhou J, Yang J, Li Y, Leng Q, et al.
    Sci Total Environ, 2018 Aug 15;633:776-784.
    PMID: 29602116 DOI: 10.1016/j.scitotenv.2018.03.217
    Atmospheric deposition nitrogen (ADN) increases the N content in soil and subsequently impacts microbial activity of soil. However, the effects of ADN on paddy soil microbial activity have not been well characterized. In this study, we studied how red paddy soil microbial activity responses to different contents of ADN through a 10-months ADN simulation on well managed pot experiments. Results showed that all tested contents of ADN fluxes (27, 55, and 82kgNha-1 when its ratio of NH4+/NO3--N (RN) was 2:1) enhanced the soil enzyme activity and microbial biomass carbon and nitrogen and 27kgNha-1 ADN had maximum effects while comparing with the fertilizer treatment. Generally, increasing of both ADN flux and RN (1:2, 1:1 and 2:1 with the ADN flux of 55kgNha-1) had similar reduced effects on microbial activity. Furthermore, both ADN flux and RN significantly reduced soil bacterial alpha diversity (p<0.05) and altered bacterial community structure (e.g., the relative abundances of genera Dyella and Rhodoblastus affiliated to Proteobacteria increased). Redundancy analysis demonstrated that ADN flux and RN were the main drivers in shaping paddy soil bacteria community. Overall, the results have indicated that increasing ADN flux and ammonium reduced soil microbial activity and changed the soil bacterial community. The finding highlights how paddy soil microbial community response to ADN and provides information for N management in paddy soil.
    Matched MeSH terms: Atmosphere/chemistry
  8. Tang ACI, Stoy PC, Hirata R, Musin KK, Aeries EB, Wenceslaus J, et al.
    Sci Total Environ, 2019 Sep 15;683:166-174.
    PMID: 31132697 DOI: 10.1016/j.scitotenv.2019.05.217
    Tropical rainforests control the exchange of water and energy between the land surface and the atmosphere near the equator and thus play an important role in the global climate system. Measurements of latent (LE) and sensible heat exchange (H) have not been synthesized across global tropical rainforests to date, which can help place observations from individual tropical forests in a global context. We measured LE and H for four years in a tropical peat forest ecosystem in Sarawak, Malaysian Borneo using eddy covariance, and hypothesize that the study ecosystem will exhibit less seasonal variability in turbulent fluxes than other tropical ecosystems as soil water is not expected to be limiting in a tropical forested wetland. LE and H show little variability across seasons in the study ecosystem, with LE values on the order of 11 MJ m-2 day and H on the order of 3 MJ m-2 day-1. Annual evapotranspiration (ET) did not differ among years and averaged 1579 ± 47 mm year-1. LE exceeded characteristic values from other tropical rainforest ecosystems in the FLUXNET2015 database with the exception of GF-Guy near coastal French Guyana, which averaged 8-11 MJ m-2 day-1. The Bowen ratio (Bo) in tropical rainforests in the FLUXNET2015 database either exhibited little seasonal trend, one seasonal peak, or two peaks. Volumetric water content (VWC) and VPD explained a trivial amount of the variability of LE and Bo in some of the tropical rainforests including the study ecosystem, but were strong controls in others, suggesting differences in stomatal regulation and/or the partitioning between evaporation and transpiration. Results demonstrate important differences in the seasonal patterns in water and energy exchange across different tropical rainforest ecosystems that need to be understood to quantify how ongoing changes in tropical rainforest extent will impact the global climate system.
    Matched MeSH terms: Atmosphere*
  9. Liu B, Lu Y, Deng H, Huang H, Wei N, Jiang Y, et al.
    Sci Total Environ, 2023 Sep 01;889:164173.
    PMID: 37201824 DOI: 10.1016/j.scitotenv.2023.164173
    Microplastic (MP) pollution is a serious global environmental problem, particularly in marine ecosystems. However, the pollution patterns of MPs in the ocean and atmosphere, particularly the sea-air interrelationship, remain unclear. Therefore, the abundance, distribution patterns, and sources of MPs in the seawater and atmosphere of the South China Sea (SCS) were comparatively investigated. The results showed that MPs were prevalent in the SCS with an average abundance of 103.4 ± 98.3 items/m3 in the seawater and 4.62 ± 3.60 items/100 m3 in the atmosphere. The spatial analysis indicated that the pollution patterns of seawater MPs were mainly determined by land-based discharge and sea surface currents, whereas atmospheric MPs were predominantly determined by air parcel trajectory and wind conditions. The highest MP abundance of 490 items/m3 in seawater was found at a station near Vietnam with current vortices. However, the highest MP abundance of 14.6 items/100 m3 in the atmosphere was found in air parcels with low-speed southerly winds from Malaysia. Similar MP compositions (e.g., polyethylene terephthalate, polystyrene, and polyethylene) were observed in the two environmental compartments. Furthermore, similar MP characteristics (e.g., shape, color, and size) in the seawater and atmosphere of the same region suggested a close relationship between the MPs in the two compartments. For this purpose, cluster analysis and calculation of the MP diversity integrated index were performed. The results showed an obvious dispersion between the two compartment clusters and a higher diversity integrated index of MPs in seawater than in the atmosphere, thus implying higher compositional diversity and more complex sources of MPs in seawater relative to the atmosphere. These findings deepen our understanding of MP fate and patterns in the semi-enclosed marginal sea environment and highlight the potential interrelationship of MPs in the air-sea system.
    Matched MeSH terms: Atmosphere
  10. Oktaria D, Soemantri D
    Malays J Med Sci, 2018 Feb;25(1):75-83.
    PMID: 29599637 DOI: 10.21315/mjms2018.25.1.9
    Background: The concept of feedback-seeking behaviour has been widely studied, but there is still a lack of understanding of this phenomenon, specifically in an Indonesian medical education setting. The aim of this research was to investigate medical students' feedback-seeking behaviour in depth in one Indonesian medical school.

    Methods: A qualitative method was employed to explore the feedback-seeking behaviour of undergraduate medical students in the Faculty of Medicine at Universitas Lampung. Focus group discussions (FGDs) were conducted with four student groups and each group consisted of 7-10 students from the years 2012, 2013 and 2014. Data triangulation was carried out through FGDs with teaching staff, and an interview with the Head of the Medical Education Unit.

    Results: Study findings indicated that the motivation of students to seek feedback was underlain by the desire to obtain useful information and to control the impressions of others. Students will tend to seek feedback from someone to whom they have either a close relationship or whose credibility they value. The most common obstacle for students to seek feedback is the reluctance and fearfulness of receiving negative comments.

    Conclusions: Through the identification of factors promoting and inhibiting feedback-seeking behaviour, medical education institutions are enabled to implement the appropriate and necessary measures to create a supportive feedback atmosphere in the learning process.

    Matched MeSH terms: Atmosphere
  11. Wahome M, Rubinstein E
    Malays J Med Sci, 2011 Jul;18(3):1-3.
    PMID: 22135594 MyJurnal
    If Malaysia is to become a high-income country by 2020, it will have to transform into a knowledge-based, innovation economy. This goal will be achieved by developing an atmosphere conducive to experimentation and entrepreneurship at home; while reaching out to partners across the globe. One of Malaysia's newest partnerships is with the New York Academy of Sciences. The Academy has expertise in innovation and higher education and a long history of promoting science, education, and science-based solutions through a global network of scientists, industry-leaders, and policy-makers. Malaysia's Prime Minister, Dato' Sri Mohd Najib Tun Abdul Razak, leveraged the Academy's network to convene a science, technology, and innovation advisory council. This council would provide practical guidance to establish Malaysia as an innovation-based economy. Three initial focus areas, namely palm-oil biomass utilisation, establishment of smart communities, and capacity building in science and engineering, were established to meet short-term and long-term targets.
    Matched MeSH terms: Atmosphere
  12. Kidder GW, Montgomery CW
    Am J Physiol, 1975 Dec;229(6):1510-3.
    PMID: 2018
    We have recently shown that 5% CO2/95% O2 in the serosal bathing solution, with 100% O2 in the mucosal solution, results in CO2-diffusion limitation of acid secretion in bullfrog gastric mucosa. Changing to 10% CO2/90% 02 on both surfaces doubles the acid secretory rate. We calculate that, were the rate of oxygen consumption to increase significantly as a result of secretory stimulation, the tissue would now be oxygen limited. This prediction is tested by raising the P02 by increasing the total pressure in a hyperbaric chamber. Since no change in acid secretory rate or potential difference was observed upon changing from PO2 = 0.9 to PO2 = 1.9 atm, we conclude that the tissue is not O2 limited at normal pressure. Decreasing PO2 below 0.9 atm, by contrast, decreases the acid secretory rate and raises both PD and resistance. We infer that the rate of oxygen consumption did not rise significantly when acid secretion was increased by supplying sufficient CO2.
    Matched MeSH terms: Atmosphere Exposure Chambers
  13. Ayavoo T, Murugesan K, Gnanasekaran A
    PMID: 33829056 DOI: 10.21037/sci-2020-027
    Wound healing phases comprise of highly synchronized process that begins due to a damage and restores the integrity of the injured tissues. Wound healing reduces the damage in tissue and supply sufficient oxygen and tissue perfusion, provide proper nourishment and humid wound healing atmosphere to re-establish the essential status of exaggerated parts. The untreated wound becomes susceptible for pus development, bacterial infection and complications like sepsis. Traditional and modern approaches are in practice to treat acute, open and chronic injuries, however, present wound care management has met with challenges and minimal positive effects. Stem cells have possible wound healing capability to overwhelm restrictions of the current wound care practices as it produces faster tissue regeneration in wound repair. Stem cells are unspecialized cells derived from adult body tissues and embryos that differentiate into any cell of an organism and capable of self-regeneration. The understanding on molecular mechanisms of stem cells has become the central and promising field in scientific study. This review focuses on the pre-existing traditional and modern treatments for wound healing, and types and roles of stem cells in wound care management. This review also focuses on the fundamental molecular characterization and factors influencing the molecular mechanisms of stem cells in wound healing.
    Matched MeSH terms: Atmosphere
  14. Waldron S, Vihermaa L, Evers S, Garnett MH, Newton J, Henderson ACG
    Sci Rep, 2019 08 07;9(1):11429.
    PMID: 31391485 DOI: 10.1038/s41598-019-46534-9
    Southeast-Asian peat swamp forests have been significantly logged and converted to plantation. Recently, to mitigate land degradation and C losses, some areas have been left to regenerate. Understanding how such complex land use change affects greenhouse gas emissions is essential for modelling climate feedbacks and supporting land management decisions. We carried out field research in a Malaysian swamp forest and an oil palm plantation to understand how clear-felling, drainage, and illegal and authorized conversion to oil palm impacted the C cycle, and how the C cycle may change if such logging and conversion stopped. We found that both the swamp forest and the plantation emit centuries-old CO2 from their drainage systems in the managed areas, releasing sequestered C to the atmosphere. Oil palm plantations are an iconic symbol of tropical peatland degradation, but CO2 efflux from the recently-burnt, cleared swamp forest was as old as from the oil palm plantation. However, in the swamp forest site, where logging had ceased approximately 30 years ago, the age of the CO2 efflux was modern, indicating recovery of the system can occur. 14C dating of the C pool acted as a tracer of recovery as well as degradation and offers a new tool to assess efficacy of restoration management. Methane was present in many sites, and in higher concentrations in slow-flowing anoxic systems as degassing mechanisms are not strong. Methane loading in freshwaters is rarely considered, but this may be an important C pool in restored drainage channels and should be considered in C budgets and losses.
    Matched MeSH terms: Atmosphere
  15. Ayodele OB
    Sci Rep, 2017 Aug 30;7(1):10008.
    PMID: 28855545 DOI: 10.1038/s41598-017-09706-z
    Achieving high degree of active metal dispersions at the highest possible metal loading and high reducibility of the metal remains a challenge in Fischer Tropsch synthesis (FTS) as well as in hydrogeoxygenation (HDO).This study therefore reports the influence of oxalic acid (OxA) functionalization on the metal dispersion, reducibility and activity of Co supported ZSM-5 catalyst in FTS and HDO of oleic acid into paraffin biofuel. The Brunauer-Emmett-Teller (BET) results showed that cobalt oxalate supported ZSM-5 catalyst (CoOx/ZSM-5) synthesized from the incorporation of freshly prepared cobalt oxalate complex into ZSM-5 displayed increase in surface area, pore volume and average pore size while the nonfunctionalized cobalt supported on ZSM-5 (Co/ZSM-5) catalyst showed reduction in those properties. Furthermore, both XRD and XPS confirmed the presence of Co° formed from the decomposition of CoOx during calcination of CoOx/ZSM-5 under inert atmosphere. The HRTEM showed that Co species average particle sizes were smaller in CoOx/ZSM-5 than in Co/ZSM-5, and in addition, CoOx/ZSM-5 shows a clear higher degree of active metal dispersion. The FTS result showed that at CO conversion over Co/ZSM-5 and CoOx/ZSM-5 catalysts were 74.28% and 94.23% and their selectivity to C5+ HC production were 63.15% and 75.4%, respectively at 4 h TOS. The HDO result also showed that the CoOx/ZSM-5 has higher OA conversion of 92% compared to 59% over Co/ZSM-5. In addition CoOx/ZSM-5 showed higher HDO and isomerization activities compared to Co/ZSM-5.
    Matched MeSH terms: Atmosphere
  16. Pastorello G, Trotta C, Canfora E, Chu H, Christianson D, Cheah YW, et al.
    Sci Data, 2020 07 09;7(1):225.
    PMID: 32647314 DOI: 10.1038/s41597-020-0534-3
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
    Matched MeSH terms: Atmosphere
  17. Hidayu Abdul Rani, Nor Fadilah Mohamad, Sherif Abdulbari Ali, Matali, Sharmeela, Sharifah Aishah Sheikh Abdul kadir
    MyJurnal
    Mercury emission into the atmosphere is a global concern due to its detrimental effects on human health in general. The two main sources of mercury emission are natural sources and anthropogenic sources. Mercury emission from natural sources include volcanic activity, weathering of rocks, water movement and biological processes which are obviously inevitable. The anthropogenic sources of mercury emission are from coal combustion, cement production and waste incineration. Thus, in order to reduce mercury emission it is appropriate to investigate how mercury is released from the anthropogenic sources and consequently the mercury removal technology that can be implemented in order to reduce mercury emission into the atmosphere. Many alternatives have been developed to reduce mercury emission and the recent application of activated carbon showed high potential in the adsorption of elemental mercury. This paper discusses the ability of activated carbon and variable parameters that influence mercury removal efficiency in flue gas.
    Matched MeSH terms: Atmosphere
  18. Anita Ramli, Sohail Ahmed, Suzana Yusup
    Sains Malaysiana, 2014;43:253-259.
    Siliceous mesoporous molecular sieve (Si-MCM-41) material with highly ordered hexagonal pore arrangement was synthesized at 373 K for 8-days duration by hydrothermal method, dried at 393 K and calcined at 823 K in N2 atmosphere. The calcined Si-MCM-41 was later functionalized with 10-50 wt. % monoethanolamine (MEA) by impregnation method and dried in vacuum at 343 K. The MEA-Si-MCM-41 samples were characterized for their physicochemical properties with FTIR, XRD, TGA, HRTEM, FESEM, BET and elemental analysis. XRD results showed that the intensity of the characteristic peaks of Si-MCM-41 reduces with increasing loading of MEA indicating that the MEA molecules are loaded in the pores as well as on the surface of Si-MCM-41. The appearance of FTIR peaks corresponding to N-H, C-N and C-H bonds suggested that Si-MCM-41 has been functionalized with MEA. The presence of Si-O-Si peaks in FTIR spectra of MEA-Si-MCM-41 samples indicates that the hexagonal pore arrangement remains intact and this is supported by HRTEM images. FESEM images show that MEA-Si-MCM-41 samples became agglomerated with increase loading of MEA. TGA analyses show that the MEA-Si-MCM-41 samples are thermally stable up to 528 K. N2 adsorption-desorption isotherms show that the textural properties of Si-MCM-41 material slowly change from a mesoporous material to non-porous material as the MEA loading increases due to pore filling effect during functionalization with MEA. Detection of N, C and H by elemental analysis confirms the presence of MEA in MEA-Si-MCM-41 samples.
    Matched MeSH terms: Atmosphere
  19. Chee Guan Ng, Sumiani Yusoff
    Sains Malaysiana, 2015;44:517-527.
    The main objective of the present study was to provide a comprehensive LCI of medium scale composting of food waste
    and yard waste at institutional level, based on substance flow analysis (SFA). A secondary objective was to present the
    composition and assess the quality of the final compost product from composting of typical Asian organic waste (food
    waste and yard waste). The experiments were designed to represent a batch situation in an institutional medium size
    composting scenario with input material of food waste mixed with grass clippings and dried leaves. Two composting
    runs were carried out with the intention to showcase the heterogeneity of organic waste and study the effect of windrow
    size on the performance of the process. The input and output material were sampled and characterized in order to
    quantify the substance balance of the process. SFA was performed by means of the mass balance model STAN 2.5 to
    compute unknown parameters (gaseous emissions). SFAs have been performed for C, N, K, P, Cd, Cr, Cu, Ni and Pb. The
    composting windrows were fed with 212.4 and 393 kg, respectively. VS content reduction is greater in composting pile
    with larger size (Run 2). The loss of C during composting was recorded in the range of 0.146-0.166 kg/kg ww. The C
    losses via leachate were insignificant (0.02% of the total input C). The total N loss during the process was 0.005-0.012
    kg/kg ww. The leachate generation was measured as 0.012-0.013 kg/kg ww. The flows of selected heavy metals were
    assessed. Heavy metals were of minor significance due to low concentrations in the inputs (food waste and yard waste).
    Heavy metals were found to be released to the atmosphere. However, majority of heavy metals remain in the finished
    compost. The C/N reduction during the process was in the range of 10-23%. In general, the compost composition was
    considered to be within the ranges previously reported in literature and thus ready for application in gardening. The LCI
    presented in the present study can be used as a starting point for making environmental assessments of medium-scale
    co-composting of food waste and yard waste in tropical environment. No major environmental problems were identified
    from the process, except for the emissions of GHGs.
    Matched MeSH terms: Atmosphere
  20. Lai FC
    Sains Malaysiana, 2015;44:1599-1607.
    Cement industries globally produced about 2.282 billion ton/year and 25 billion tons of concrete are produced yearly
    all over the world, necessary measures are to be taken to reduce energy use along with the prevention of environmental
    degradation, depletion of the limited resources and contribute 7% to global warming effects due to the release of carbon
    dioxide to the atmosphere. Cement additives quality improver polymer (CAQIP) was developed from synthesized polymer,
    waste materials derived from petro-chemical and palm oil waste for production of sustainable cement. Industrial scale
    trial in a local cement plants by dosing 0.009%-0.690% CAQIP significant improved productivity, 8.3-27.5% efficiency in
    saving, 24.73-86.36% clinkering energy and 7.7-21.57% grinding energy in the production of Ordinary Portland Cement
    and sustainable cement. Strength quality improved 7.31-34.8% (2 day) and 3.85-57.58% (28 day). Carbon dioxide and
    others toxic gases emission was reduced 21.90-90.0% by replacing clinker with waste material such as fly ash (25-
    35%), out-spec clinker (50-100%) and limestone waste (5-25%). The developed CAQIP significant improved productivity,
    quality strength, reduced CO2
    emission, grinding & clinkering energy and enhanced production of sustainable cement
    and concrete in Malaysia.
    Matched MeSH terms: Atmosphere
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links