Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Hamzah A, Abdulrashid N
    J. Biochem. Mol. Biol. Biophys., 2002 Oct;6(5):365-9.
    PMID: 12385974
    The xylanase gene from Bacillus pumilus PJ19 amplified by polymerase chain reaction (PCR) was cloned into pCRII vector and transformed into Escherichia coli strain INValphaF'. Starting from an ATG as an initiator codon, an open reading frame coding for 202 amino acids was obtained. The recombinant xylanase sequence showed a 96% homology with the xylanase sequence from B. pumilus IPO strain and had an estimated molecular weight of 22,474. Xylanase activity expressed by E. coli INValphaF' harboring the cloned gene was located primarily in the cytoplasmic fraction.
    Matched MeSH terms: Bacillus/enzymology
  2. Rahman RN, Chin JH, Salleh AB, Basri M
    Mol Genet Genomics, 2003 May;269(2):252-60.
    PMID: 12756537
    A Bacillus sphaericus strain (205y) that produces an organic solvent-tolerant lipase was isolated in Port Dickson, Malaysia. The gene for the lipase was recovered from a genomic library and sequenced. Phylogenetic analysis was performed based on an alignment of thirteen microbial lipase sequences obtained from the NCBI database. The analysis suggested that the B. sphaericus lipase gene is a novel gene, as it is distinct from other lipase genes in Families I.4 and I.5 reported so far. Expression in Escherichia coli under the control of the lacZ promoter resulted in an eight-fold increase in enzyme activity after a 3-h induction with 1 mM IPTG. The crude enzyme thus obtained showed a slight (10%) enhancement in activity after a 30-min incubation in 25% (v/v) n-hexane at 37 degrees C, and retained 90% of its activity after a similar period in 25% (v/v) p-xylene.
    Matched MeSH terms: Bacillus/enzymology*
  3. Hamid TH, Rahman RN, Salleh AB, Basri M
    Protein J, 2010 May;29(4):290-7.
    PMID: 20509044 DOI: 10.1007/s10930-010-9251-7
    The use of lipase in hydrophilic solvent is usually hampered by inactivation. The solvent stability of a recombinant solvent stable lipase isolated from thermostable Bacillus sp. strain 42 (Lip 42), in DMSO and methanol were studied at different solvent-water compositions. The enzymatic activities were retained in up to 45% v/v solvent compositions. The near-UV CD spectra indicated that tertiary structures were perturbed at 60% v/v and above. Far-UV CD in methanol indicated the secondary structure in Lip 42 was retained throughout all solvent compositions. Fluorescence studies indicated formations of molten globules in solvent compositions of 60% v/v and above. The enzyme was able to retain its secondary structures in the presence of methanol; however, there was a general reduction in beta-sheet and an increase in alpha-helix contents. The H-bonding arrangements triggered in methanol and DMSO, respectively, caused different forms of tertiary structure perturbations on Lip 42, despite both showing partial denaturation with molten globule formations.
    Matched MeSH terms: Bacillus/enzymology*
  4. Rahman RN, Mahamad S, Salleh AB, Basri M
    J Ind Microbiol Biotechnol, 2007 Jul;34(7):509-17.
    PMID: 17492323
    Five out of the nine benzene-toulene-ethylbenzene-xylene (BTEX) tolerant bacteria that demonstrated high protease activity on skim milk agar were isolated. Among them, isolate 115b identified as Bacillus pumilus exhibited the highest protease production. The protease produced was stable in 25% (v/v) benzene and toluene and it was activated 1.7 and 2.5- fold by n-dodecane and n-tetradecane, respectively. The gene encoding the organic solvent tolerant protease was cloned and its nucleotide sequence determined. Sequence analysis revealed an open reading frame (ORF) of 1,149 bp that encoded a polypeptide of 383 amino acid residues. The polypeptide composed of 29 residues of signal peptide, a propeptide of 79 residues and a mature protein of 275 amino acids with a calculated molecular mass of 27,846 Da. This is the only report available to date on organic solvent tolerant protease from B. pumilus.
    Matched MeSH terms: Bacillus/enzymology*
  5. Masomian M, Jasni AS, Rahman RNZRA, Salleh AB, Basri M
    J Biotechnol, 2017 Dec 20;264:51-62.
    PMID: 29107669 DOI: 10.1016/j.jbiotec.2017.10.014
    A total of 97 amino acids, considered as the signal peptide and transmembrane segments were removed from 205y lipase gene using polymerase chain reaction technique that abolished the low activity of this enzyme. The mature enzyme was expressed in Escherichia coli using pBAD expression vector, which gave up to a 13-fold increase in lipase activity. The mature 205y lipase (without signal peptide and transmembrane; -SP/TM) was purified to homogeneity using the isoelectric focusing technique with 53% recovery. Removing of the signal peptide and transmembrane segments had resulted in the shift of optimal pH, an increase in optimal temperature and tolerance towards more water-miscible organic solvents as compared to the characteristics of open reading frame (ORF) of 205y lipase. Also, in the presence of 1mM inhibitors, less decrease in the activity of mature 205y lipase was observed compared to the ORF of the enzyme. Protein structure modeling showed that 205y lipase consisted of an α/β hydrolase fold without lid domain. However, the transmembrane segment could effect on the enzyme activity by covering the active site or aggregation the protein.
    Matched MeSH terms: Bacillus/enzymology
  6. Sulong MR, Abdul Rahman RN, Salleh AB, Basri M
    Protein Expr Purif, 2006 Oct;49(2):190-5.
    PMID: 16769222
    An organic solvent tolerant (OST) lipase gene from Bacillus sphaericus 205y was successfully expressed extracellularly. The expressed lipase was purified using two steps purification; ultrafiltration and hydrophobic interaction chromatography (HIC) to 8-fold purity and 32% recovery. The purified 205y lipase revealed homogeneity on denaturing gel electrophoresis and the molecular mass was at approximately 30 kDa. The optimum pH for the purified 205y lipase was 7.0-8.0 and its stability showed a broad range of pH value between pH 5.0 to 13.0 at 37 degrees C. The purified 205y lipase exhibited an optimum temperature of 55 degrees C. The activity of the purified lipase was stimulated in the presence of Ca2+ and Mg2+. Ethylenediaminetetraacetic acid (EDTA) has no effect on its activity; however inhibition was observed with phenylmethane sulfonoyl fluoride (PMSF) a serine hydrolase inhibitor. Organic solvents such as dimethylsulfoxide (DMSO), methanol, p-xylene and n-decane enhanced the activity. Studies on the effect of oil showed that the lipase was most active in the presence of tricaprin (C10). The lipase exhibited 1,3 positional specificity.
    Matched MeSH terms: Bacillus/enzymology*
  7. Ang SS, Salleh AB, Chor LT, Normi YM, Tejo BA, Rahman MBA, et al.
    Protein J, 2018 04;37(2):180-193.
    PMID: 29508210 DOI: 10.1007/s10930-018-9764-z
    The bioconversion of vitamin D3 catalyzed by cytochrome P450 (CYP) requires 25-hydroxylation and subsequent 1α-hydroxylation to produce the hormonal activated 1α,25-dihydroxyvitamin D3. Vitamin D3 25-hydroxylase catalyses the first step in the vitamin D3 biosynthetic pathway, essential in the de novo activation of vitamin D3. A CYP known as CYP107CB2 has been identified as a novel vitamin D hydroxylase in Bacillus lehensis G1. In order to deepen the understanding of this bacterial origin CYP107CB2, its detailed biological functions as well as biochemical characteristics were defined. CYP107CB2 was characterized through the absorption spectral analysis and accordingly, the enzyme was assayed for vitamin D3 hydroxylation activity. CYP-ligand characterization and catalysis optimization were conducted to increase the turnover of hydroxylated products in an NADPH-regenerating system. Results revealed that the over-expressed CYP107CB2 protein was dominantly cytosolic and the purified fraction showed a protein band at approximately 62 kDa on SDS-PAGE, indicative of CYP107CB2. Spectral analysis indicated that CYP107CB2 protein was properly folded and it was in the active form to catalyze vitamin D3 reaction at C25. HPLC and MS analysis from a reconstituted enzymatic reaction confirmed the hydroxylated products were 25-hydroxyitamin D3 and 1α,25-dihydroxyvitamin D3 when the substrates vitamin D3 and 1α-hydroxyvitamin D3 were used. Biochemical characterization shows that CYP107CB2 performed hydroxylation activity at 25 °C in pH 8 and successfully increased the production of 1α,25-dihydroxyvitamin D3 up to four fold. These findings show that CYP107CB2 has a biologically relevant vitamin D3 25-hydroxylase activity and further suggest the contribution of CYP family to the metabolism of vitamin D3.
    Matched MeSH terms: Bacillus/enzymology*
  8. Ranjani V, Janeček S, Chai KP, Shahir S, Abdul Rahman RN, Chan KG, et al.
    Sci Rep, 2014 Jul 28;4:5850.
    PMID: 25069018 DOI: 10.1038/srep05850
    The α-amylases from Anoxybacillus species (ASKA and ADTA), Bacillus aquimaris (BaqA) and Geobacillus thermoleovorans (GTA, Pizzo and GtamyII) were proposed as a novel group of the α-amylase family GH13. An ASKA yielding a high percentage of maltose upon its reaction on starch was chosen as a model to study the residues responsible for the biochemical properties. Four residues from conserved sequence regions (CSRs) were thus selected, and the mutants F113V (CSR-I), Y187F and L189I (CSR-II) and A161D (CSR-V) were characterised. Few changes in the optimum reaction temperature and pH were observed for all mutants. Whereas the Y187F (t1/2 43 h) and L189I (t1/2 36 h) mutants had a lower thermostability at 65°C than the native ASKA (t1/2 48 h), the mutants F113V and A161D exhibited an improved t1/2 of 51 h and 53 h, respectively. Among the mutants, only the A161D had a specific activity, k(cat) and k(cat)/K(m) higher (1.23-, 1.17- and 2.88-times, respectively) than the values determined for the ASKA. The replacement of the Ala-161 in the CSR-V with an aspartic acid also caused a significant reduction in the ratio of maltose formed. This finding suggests the Ala-161 may contribute to the high maltose production of the ASKA.
    Matched MeSH terms: Bacillus/enzymology; Geobacillus/enzymology; Anoxybacillus/enzymology
  9. Goh PH, Illias RM, Goh KM
    Int J Mol Sci, 2012;13(5):5307-23.
    PMID: 22754298 DOI: 10.3390/ijms13055307
    Studies related to the engineering of calcium binding sites of CGTase are limited. The calcium binding regions that are known for thermostability function were subjected to site-directed mutagenesis in this study. The starting gene-protein is a variant of CGTase Bacillus sp. G1, reported earlier and denoted as "parent CGTase" herein. Four CGTase variants (S182G, S182E, N132R and N28R) were constructed. The two variants with a mutation at residue 182, located adjacent to the Ca-I site and the active site cleft, possessed an enhanced thermostability characteristic. The activity half-life of variant S182G at 60 °C was increased to 94 min, while the parent CGTase was only 22 min. This improvement may be attributed to the formation of a shorter α-helix and the alleviation of unfavorable steric strains by glycine at the corresponding region. For the variant S182E, an extra ionic interaction at the A/B domain interface increased the half-life to 31 min, yet it reduced CGTase activity. The introduction of an ionic interaction at the Ca-I site via the mutation N132R disrupted CGTase catalytic activity. Conversely, the variant N28R, which has an additional ionic interaction at the Ca-II site, displayed increased cyclization activity. However, thermostability was not affected.
    Matched MeSH terms: Bacillus/enzymology*
  10. Raha AR, Chang LY, Sipat A, Yusoff K, Haryanti T
    Lett Appl Microbiol, 2006 Mar;42(3):210-4.
    PMID: 16478506
    The aim of the study is to evaluate whether xylanase can be used as a potential reporter gene for cloning and expression studies in Lactococcus.
    Matched MeSH terms: Bacillus/enzymology
  11. Ong RM, Goh KM, Mahadi NM, Hassan O, Rahman RN, Illias RM
    J Ind Microbiol Biotechnol, 2008 Dec;35(12):1705-14.
    PMID: 18726621 DOI: 10.1007/s10295-008-0462-2
    The cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19) gene from Bacillus sp. G1 was successfully isolated and cloned into Escherichia coli. Analysis of the nucleotide sequence revealed the presence of an open reading frame of 2,109 bp and encoded a 674 amino acid protein. Purified CGTase exhibited a molecular weight of 75 kDa and had optimum activity at pH 6 and 60 degrees C. Heterologous recombinant protein expression in E. coli is commonly problematic causing intracellular localization and formation of inactive inclusion bodies. This paper shows that the majority of CGTase was secreted into the medium due to the signal peptide of Bacillus sp. G1 that also works well in E. coli, leading to easier purification steps. When reacted with starch, CGTase G1 produced 90% beta-cyclodextrin (CD) and 10% gamma-CD. This enzyme also preferred the economical tapioca starch as a substrate, based on kinetics studies. Therefore, CGTase G1 could potentially serve as an industrial enzyme for the production of beta-CD.
    Matched MeSH terms: Bacillus/enzymology*
  12. Manas NH, Bakar FD, Illias RM
    J Mol Graph Model, 2016 06;67:1-13.
    PMID: 27155296 DOI: 10.1016/j.jmgm.2016.04.004
    Maltogenic amylase (MAG1) from Bacillus lehensis G1 displayed the highest hydrolysis activity on β-cyclodextrin (β-CD) to produce maltose as a main product and exhibited high transglycosylation activity on malto-oligosaccharides with polymerization degree of three and above. These substrate and product specificities of MAG1 were elucidated from structural point of view in this study. A three-dimensional structure of MAG1 was constructed using homology modeling. Docking of β-CD and malto-oligosaccharides was then performed in the MAG1 active site. An aromatic platform in the active site was identified which is responsible in substrate recognition especially in determining the enzyme's preference toward β-CD. Molecular dynamics (MD) simulation showed MAG1 structure is most stable when docked with β-CD and least stable when docked with maltose. The docking analysis and MD simulation showed that the main subsites for substrate stabilization in the active site are -2, -1, +1 and +2. A bulky residue, Trp359 at the +2 subsite was identified to cause steric interference to the bound linear malto-oligosaccharides thus prevented it to occupy subsite +3, which can only be reached by a highly bent glucose molecule such as β-CD. The resulted modes of binding from docking simulation show a good correlation with the experimentally determined hydrolysis pattern. The subsite structure generated from this study led to a possible mode of action that revealed how maltose was mainly produced during hydrolysis. Furthermore, maltose only occupies subsite +1 and +2, therefore could not be hydrolyzed or transglycosylated by the enzyme. This important knowledge has paved the way for a novel structure-based molecular design for modulation of its catalytic activities.
    Matched MeSH terms: Bacillus/enzymology*
  13. Jaafar NR, Khoiri NM, Ismail NF, Mahmood NAN, Abdul Murad AM, Abu Bakar FD, et al.
    Enzyme Microb Technol, 2020 Oct;140:109625.
    PMID: 32912685 DOI: 10.1016/j.enzmictec.2020.109625
    Endo-β-1,3-glucanase from alkalophilic bacterium, Bacillus lehensis G1 (Blg32) composed of 284 amino acids with a predicted molecular mass of 31.6 kDa is expressed in Escherichia coli and purified to homogeneity. Herein, Blg32 characteristics, substrates and product specificity as well as structural traits that might be involved in the production of sugar molecules are analysed. This enzyme functions optimally at the temperature of 70 °C, pH value of 8.0 with its catalytic activity strongly enhanced by Mn2+. Remarkably, the purified enzyme is highly stable in high temperature and alkaline conditions. It exhibits the highest activity on laminarin (376.73 U/mg) followed by curdlan and yeast β-glucan. Blg32 activity increased by 62% towards soluble substrate (laminarin) compared to insoluble substrate (curdlan). Hydrolytic products of laminarin were oligosaccharides with degree of polymerisation (DP) of 1 to 5 with the main product being laminaritriose (DP3). This suggests that the active site of Blg32 could recognise up to five glucose units. High concentration of Blg32 mainly produces glucose whilst low concentration of Blg32 yields oligosaccharides with different DP (predominantly DP3). A theoretical structural model of Blg32 was constructed and structural analysis revealed that Trp156 is involved in multiple hydrophobic stacking interactions. The amino acid was predicted to participate in substrate recognition and binding. It was also exhibited that catalytic groove of Blg32 has a narrow angle, thus limiting the substrate binding reaction. All these properties and knowledge of the subsites are suggested to be related to the possible mode of action of how Blg32 produces glucooligosaccharides.
    Matched MeSH terms: Bacillus/enzymology*
  14. Nawawi NN, Hashim Z, Manas NHA, Azelee NIW, Illias RM
    Int J Biol Macromol, 2020 Apr 01;148:1222-1231.
    PMID: 31759025 DOI: 10.1016/j.ijbiomac.2019.10.101
    Enzymatic synthesis of maltooligosaccharides is hampered due to lack of stability of soluble enzyme. This limitation can be tackled by cross linked enzyme aggregates (CLEAs) immobilization approach. However, substrate diffusion is a major bottleneck in cross linking technology. Herein, CLEAs of maltogenic amylase from Bacillus lehensis G1 (Mag1) was developed with addition of porous agent (Mag1-p-CLEAs). Comparison of thermal, pH and kinetic analysis with CLEAs without porous agent (Mag1-CLEAs) and free Mag1 was performed. Mag1-p-CLEAs with porous structure prepared at 0.8% (w/v) of citrus pectin (porous agent), 0.25% (w/v) of chitosan (cross linker) and cross linked for 1.5 h yielded 91.20% activity. 80% of activity is retained after 30 min of incubation at 40 °C and showed longer half-life than free Mag1 and Mag1-CLEAs. Mag1-p-CLEAs also showed pH stability at acidic and alkaline pH. The 1.68-fold increase in Vmax value in comparison to Mag1-CLEAs showed that the presence of pores of Mag1-p-CLEAs enhanced the beta-cyclodextrin accessibility. The increase in high catalytic efficiency (Kcat/Km) value, 1.90-fold and 1.05-fold showed that it also has better catalytic efficiency than free Mag1 and Mag1-CLEAs, respectively. Mag1-p-CLEAs not only improved substrate diffusibility of CLEAs, but also leads to higher thermal and pH stability of Mag1.
    Matched MeSH terms: Bacillus/enzymology*
  15. Nawawi NN, Hashim Z, Rahman RA, Murad AMA, Bakar FDA, Illias RM
    Int J Biol Macromol, 2020 May 01;150:80-89.
    PMID: 32035147 DOI: 10.1016/j.ijbiomac.2020.02.032
    Maltooligosaccharides (MOSs) are emerging oligosaccharides in food-based applications and can be synthesized through the enzymatic synthesis of maltogenic amylase from Bacillus lehensis G1 (Mag1). However, the lack of enzyme stability makes this approach unrealistic for industrial applications. The formation of cross-linked enzyme aggregates (CLEAs) is a promising tool for improving enzyme stability, and the substrate accessibility problem of CLEA formation was overcome by the addition of porous agents to generate porous CLEAs (p-CLEAs). However, p-CLEAs exhibited high enzyme leaching and low solvent tolerance. To address these problems, p-CLEAs of Mag1 (Mag1-p-CLEAs) were entrapped in calcium alginate beads (CA). Mag1-p-CLEAs-CA prepared with 2.5% (w/v) sodium alginate and 0.6% (w/v) calcium chloride yielded 53.16% (17.0 U/mg) activity and showed a lower deactivation rate and longer half-life than those of entrapped free Mag1 (Mag1-CA) and entrapped non-porous Mag1-CLEAs (Mag1-CLEAs-CA). Moreover, Mag1-p-CLEAs-CA exhibited low enzyme leaching and high tolerance in various solvents compared to Mag1-p-CLEAs. A kinetic study revealed that Mag1-p-CLEAs-CA exhibited relatively high affinity towards beta-cyclodextrin (β-CD) (Km = 0.62 mM). MOSs (300 mg/g) were synthesized by Mag1-p-CLEAs-CA at 50 °C. Finally, the reusability of Mag1-p-CLEAs-CA makes them as a potential biocatalyst for the continuous synthesis of MOSs.
    Matched MeSH terms: Bacillus/enzymology
  16. Abdul Manas NH, Pachelles S, Mahadi NM, Illias RM
    PLoS One, 2014;9(9):e106481.
    PMID: 25221964 DOI: 10.1371/journal.pone.0106481
    A maltogenic amylase (MAG1) from alkaliphilic Bacillus lehensis G1 was cloned, expressed in Escherichia coli, purified and characterised for its hydrolysis and transglycosylation properties. The enzyme exhibited high stability at pH values from 7.0 to 10.0. The hydrolysis of β-cyclodextrin (β-CD) produced malto-oligosaccharides of various lengths. In addition to hydrolysis, MAG1 also demonstrated transglycosylation activity for the synthesis of longer malto-oligosaccharides. The thermodynamic equilibrium of the multiple reactions was shifted towards synthesis when the reaction conditions were optimised and the water activity was suppressed, which resulted in a yield of 38% transglycosylation products consisting of malto-oligosaccharides of various lengths. Thin layer chromatography and high-performance liquid chromatography analyses revealed the presence of malto-oligosaccharides with a higher degree of polymerisation than maltoheptaose, which has never been reported for other maltogenic amylases. The addition of organic solvents into the reaction further suppressed the water activity. The increase in the transglycosylation-to-hydrolysis ratio from 1.29 to 2.15 and the increased specificity toward maltopentaose production demonstrated the enhanced synthetic property of the enzyme. The high transglycosylation activity of maltogenic amylase offers a great advantage for synthesising malto-oligosaccharides and rare carbohydrates.
    Matched MeSH terms: Bacillus/enzymology*
  17. Saallah S, Naim MN, Mokhtar MN, Abu Bakar NF, Gen M, Lenggoro IW
    Enzyme Microb Technol, 2014 Oct;64-65:52-9.
    PMID: 25152417 DOI: 10.1016/j.enzmictec.2014.06.002
    In this study, the potential of electrohydrodynamic atomization or electrospraying to produce nanometer-order CGTase particles from aqueous suspension was demonstrated. CGTase enzyme was prepared in acetate buffer solution (1% v/v), followed by electrospraying in stable Taylor cone-jet mode. The deposits were collected on aluminium foil (collector) at variable distances from the tip of spraying needle, ranging from 10 to 25 cm. The Coulomb fission that occurs during electrospraying process successfully transformed the enzyme to the solid state without any functional group deterioration. The functional group verification was conducted by FTIR analysis. Comparison between the deposit and the as-received enzyme in dry state indicates almost identical spectra. By increasing the distance of the collector from the needle tip, the average particle size of the solidified enzyme was reduced from 200±117 nm to 75±34 nm. The average particle sizes produced from the droplet fission were in agreement with the scaling law models. Enzyme activity analysis showed that the enzyme retained its initial activity after the electrospraying process. The enzyme particles collected at the longest distance (25 cm) demonstrated the highest enzyme activity, which indicates that the activity was controlled by the enzyme particle size.
    Matched MeSH terms: Bacillus/enzymology
  18. Ramli N, Abd-Aziz S, Alitheen NB, Hassan MA, Maeda T
    Mol Biotechnol, 2013 Jul;54(3):961-8.
    PMID: 23338983 DOI: 10.1007/s12033-013-9647-7
    Regulation of RNA transcription in controlling the expression of genes at promoter and terminator regions is crucial as the interaction of RNA polymerase occurred at both sites. Gene encoding cyclodextrin glycosyltransferase (CGTase) from Bacillus sp. NR5 UPM isolated in the previous study was used for further construction of pTZCGT-SS, pTZCGT-BS and pTZCGT-BT expression systems for enhancement of CGTase production. The putative promoter regions, -35 and -10 sequences were found in the upstream of the mature gene start codon. Whereas, long inverted repeats sequences which can form a stable stem and loop structure was found downstream of the open reading frame (ORF) of Bacillus sp. NR5 UPM CGTase. The construction of E. coli strain harbouring pTZCGT-BS showed increment of 3.2-fold in CGTase activity compared to the wild type producer. However, insertion of terminator downstream of CGTase gene in E. coli strain harbouring pTZCGT-BT only resulted in 4.42 % increment of CGTase production compared to E. coli strain containing pTZCGT-BS, perhaps due to low intrinsic termination efficiency. Thus, it is suggested that the insertion of the putative promoter regions upstream of the coding sequence for the construction of CGTase expression system will further enhance in the recombinant enzyme production.
    Matched MeSH terms: Bacillus/enzymology
  19. Abd Rahman NH, Jaafar NR, Abdul Murad AM, Abu Bakar FD, Shamsul Annuar NA, Md Illias R
    Int J Biol Macromol, 2020 Sep 15;159:577-589.
    PMID: 32380107 DOI: 10.1016/j.ijbiomac.2020.04.262
    Short-chain fructooligosaccharides (scFOSs) can be produced from the levan hydrolysis using levanase. Levanase from Bacillus lehensis G1 (rlevblg1) is an enzyme that specifically converts levan to scFOSs. However, the use of free levanase presents a lack of stability and reusability, thus hindering the synthesis of scFOSs for continuous reactions. Here, CLEAs for rlevblg1 were prepared and characterized. Cross-linked levanase aggregates using glutaraldehyde (CLLAs-ga) and bovine albumin serum (CLLAs-ga-bsa) showed the best activity recovery of 92.8% and 121.2%, respectively. The optimum temperature of CLLAs-ga and CLLAs-ga-bsa was increased to 35 °C and 40 °C, respectively, from its free rlevblg1 (30 °C). At high temperature (50 °C), the half-life of CLLAs-ga-bsa was higher than that of free rlevblg1 and CLLAs-ga. Both CLLAs exhibited higher stability at pH 9 and pH 10. Hyperactivation of CLLAs-ga-bsa was achieved with an effectiveness factor of more than 1 and with improved catalytic efficiency. After 3 h reaction, CLLAs-ga-bsa produced the highest total scFOSs yield of 35.4% and total sugar of 60.4% per gram levan. Finally, the reusability of CLLAs for 8 cycles with more than 50% activity retained makes them as a potential synthetic catalyst to be explored for scFOSs synthesis.
    Matched MeSH terms: Bacillus/enzymology*
  20. Liew CW, Illias RM, Mahadi NM, Najimudin N
    FEMS Microbiol Lett, 2007 Nov;276(1):114-22.
    PMID: 17937670
    A Na(+)/H(+) antiporter gene was isolated from alkaliphilic Bacillus sp. G1. The full-length sequence of the Na(+)/H(+) antiporter gene was obtained using a genome walking method, and designated as g1-nhaC. An ORF preceded by a promoter-like sequence and a Shine-Dalgarno sequence, and followed by a terminator-like sequence was identified. The deduced amino acid sequence consists of 535 amino acids, and a calculated molecular mass of 57 776 Da. g1-nhaC was subsequently cloned into pET22b(+) and expressed in Escherichia coli BL21 (DE3). Recombinant E. coli harboring the g1-nhaC gene was able to grow in modified L medium at various concentrations of NaCl (0.2-2.0 M) at different pH values. The recombinant bacteria grew well in the medium with concentrations of NaCl as high as 1.75 M at pH 8.0-9.0. Minimal growth was observed at 2.0 M NaCl, pH 8.0-9.0. At pH 10, the recombinant bacteria grew well in a medium with a low concentration of NaCl (0.2 M). These results suggested that the g1-NhaC antiporter from Bacillus sp. G1 plays a role in Na(+) extrusion at lower pH values and in pH homeostasis at pH 10 under Na(+)-limiting conditions.
    Matched MeSH terms: Bacillus/enzymology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links