Displaying publications 1 - 20 of 69 in total

Abstract:
Sort:
  1. Tay ST, Devi S, Puthucheary S, Kautner I
    Zentralbl. Bakteriol., 1996 Mar;283(3):306-13.
    PMID: 8861868
    By means of the gentamicin HEp-2 cell invasion assay, it was demonstrated that 82% of the Campylobacters tested were cell-invasive, including 83% of isolates from bloody diarrhoea and 80% of isolates from watery diarrhoea. The large number of invasive strains from watery diarrhoea suggests the possible role of invasiveness in the production of watery diarrhoea. Whether this stage can progress further to more severe symptoms such as bloody diarrhoea remains to be elucidated. Whether this progression to bloody diarrhoea occurs as a result of toxin production is still debatable. In Vero cells, invasion was less efficient and intracellular multiplication was not observed.
    Matched MeSH terms: Bacterial Adhesion
  2. Al-Haddawi MH, Jasni S, Zamri-Saad M, Mutalib AR, Zulkifli I, Son R, et al.
    Vet J, 2000 May;159(3):274-81.
    PMID: 10775473
    In vitro experiments were undertaken to study the adhesion and colonization to tracheal mucosa, lung and aorta explants from freshly killed rabbits of two different strains of Pasteurella multocida. Serotype A:3 (capsulated, fimbriae +, haemagglutination -, dermonecrotic toxin -) isolated from a rabbit with rhinitis, and serotype D:1 (non-capsulated, fimbriae +, haemagglutination +, dermonecrotic toxin +) isolated from a dead rabbit with septicaemia, were used. When the explants were observed under the scanning electron microscope, the type D strain was highly adherent to trachea and aorta explants compared to the type A strain. Adhesion to lung explants was best achieved by the type A strain after 45 min incubation, but after 2 h incubation no significant difference was observed between the strains. Our data indicate that the presence of fimbriae and the absence of capsule seem to enhance the adherence of P. multocida type D strain to tracheal tissue. The capsular material of P. multocida type A strain and the toxin of the type D strain seem to influence the adherence to lung tissue in rabbit. Adhesion of strain D to aorta may indicate the expression of receptors on the endothelium to that strain and may also explain the ability of certain strains to cause septicaemia.
    Matched MeSH terms: Bacterial Adhesion*
  3. Al-Marzok MI, Al-Azzawi HJ
    J Contemp Dent Pract, 2009;10(6):E017-24.
    PMID: 20020077
    Dental plaque has a harmful influence on periodontal tissue. When a porcelain restoration is fabricated and refinishing of the glazed surface is inevitable, the increase in surface roughness facilitates the adhesion of plaque and its components. The aim of this in vitro study was to evaluate the effect of surface roughness of glazed or polished porcelain on the adhesion of oral Streptococcus mutans.
    Matched MeSH terms: Bacterial Adhesion/physiology*
  4. Omar MS, Damanhuri NS, Kumolosasi E
    Turk J Gastroenterol, 2017 Jan;28(1):53-59.
    PMID: 27991853 DOI: 10.5152/tjg.2016.0409
    BACKGROUND/AIMS: Helicobacter pylori is a carcinogenic bacterium that could induce P-glycoprotein expression in the human gastrointestinal tract. Bacterial adherence to the gastrointestinal cell lines could be influenced by the level of P-glycoprotein. This study aimed to determine the influence of proton pump inhibitors that exhibit an inhibitory effect on P-glycoprotein in gastrointestinal carcinoma cell lines, namely Caco-2 and LS174T, in relation to H. pylori adherence.

    MATERIALS AND METHODS: Caco-2 and LS174T cells lines treated with omeprazole and esomeprazole were used in this study to assess the bacterial attachment of H. pylori within certain incubation periods.

    RESULTS: The presence of proton pump inhibitors increased the H. pylori adherence in a time-dependent manner in both Caco-2 and LS174T cell lines. The double inhibition of P-glycoprotein using proton pump inhibitor and P-glycoprotein inhibitor caused low P-glycoprotein expression in the cell lines, resulting in higher H. pylori adherence compared to the control cell lines.

    CONCLUSION: Proton pump inhibitors may alter P-glycoprotein expression in the gastrointestinal tract, and subsequently H. pylori adherence on the cell lines, and may contribute to resistance to drug therapy.

    Matched MeSH terms: Bacterial Adhesion/drug effects*
  5. Uyub AM, Anuar AK
    PMID: 11485102
    A study was carried out on 49 H. pylori-positive and 11 H. pylori-negative patients to determine the reactivity of peripheral blood lymphocytes (PBL) to phytohemagglutinin (PHA) and acid glycine extract (AGE) of H. pylori, and to identify cells responsible for imunosuppression. Based on response to PHA stimulation, cell-mediated immunity of all patients were competent. In some patients, however, response to AGE of H. pylori was suppressed by plastic adherent cells. This study provided evidence of the presence of plastic adherent suppressor cells which suppressed PBL response to AGE of H. pylori but not to PHA suggesting that immunosuppression is antigen specific. There is also an indication that immunosuppression may be species-specific as PBL devoid of plastic adherent cells only responded to stimulation by AGE of H. pylori but not that to AGE of C. jejuni.
    Matched MeSH terms: Bacterial Adhesion*
  6. Jin LZ, Ho YW, Ali MA, Abdullah N, Jalaludin S
    J. Appl. Bacteriol., 1996 Aug;81(2):201-6.
    PMID: 8760330
    Single strains of Lactobacillus acidophilus and Lact. fermentum, isolated from chicken intestine, were used to study in vitro interactions with Salmonella enteritidis, Salm. pullorum or Salm. typhimurium in an ileal epithelial cell (IEC) radioactive assay. Exclusion, competition and displacement phenomena were investigated by respectively incubating (a) lactobacilli and IEC together, prior to addition of salmonellae, (b) lactobacilli, IEC and salmonellae together, and (c) salmonellae and IEC, followed by the lactobacilli. Lactobacilli were selected for study because of their strong ability to adhere to IEC and poor aggregation with salmonellae. The results demonstrated that Lact. acidophilus significantly reduced (P < 0.05) the attachment of Salm. pullorum to IEC in the tests for exclusion and competition, but not in the displacement tests. Lactobacillus fermentum was found to have some ability to reduce the attachment of Salm. typhimurium to IEC under the conditions of exclusion (P < 0.08), competition (P < 0.09), but not displacement. However, both Lact. acidophilus and Lact. fermentum were unable to reduce the adherence of Salm. enteritidis to IEC under any of the conditions.
    Matched MeSH terms: Bacterial Adhesion/physiology*
  7. Park AW, Yaacob HB
    J Nihon Univ Sch Dent, 1994 Mar;36(1):1-33.
    PMID: 8207501
    Matched MeSH terms: Bacterial Adhesion
  8. Park AW, Yaacob HB
    J Nihon Univ Sch Dent, 1994 Sep;36(3):157-74.
    PMID: 7989958
    Matched MeSH terms: Bacterial Adhesion/physiology
  9. Daood U, Matinlinna JP, Pichika MR, Mak KK, Nagendrababu V, Fawzy AS
    Sci Rep, 2020 07 03;10(1):10970.
    PMID: 32620785 DOI: 10.1038/s41598-020-67616-z
    To study the antimicrobial effects of quaternary ammonium silane (QAS) exposure on Streptococcus mutans and Lactobacillus acidophilus bacterial biofilms at different concentrations. Streptococcus mutans and Lactobacillus acidophilus biofilms were cultured on dentine disks, and incubated for bacterial adhesion for 3-days. Disks were treated with disinfectant (experimental QAS or control) and returned to culture for four days. Small-molecule drug discovery-suite was used to analyze QAS/Sortase-A active site. Cleavage of a synthetic fluorescent peptide substrate, was used to analyze inhibition of Sortase-A. Raman spectroscopy was performed and biofilms stained for confocal laser scanning microscopy (CLSM). Dentine disks that contained treated dual-species biofilms were examined using scanning electron microscopy (SEM). Analysis of DAPI within biofilms was performed using CLSM. Fatty acids in bacterial membranes were assessed with succinic-dehydrogenase assay along with time-kill assay. Sortase-A protein underwent conformational change due to QAS molecule during simulation, showing fluctuating alpha and beta strands. Spectroscopy revealed low carbohydrate intensities in 1% and 2% QAS. SEM images demonstrated absence of bacterial colonies after treatment. DAPI staining decreased with 1% QAS (p 
    Matched MeSH terms: Bacterial Adhesion/drug effects
  10. Ida Muryany, Ahmad Rohi Ghazali, Nor Fadilah Rajab, Hing HL, Ina-Salwany, Mohd Zamri Saad, et al.
    Sains Malaysiana, 2018;47:2391-2399.
    Bacterial adhesion to host cells is the most important probiotic character. However, the adhesion of probiotic should not
    affect the viability of the host cells. In this study, Lactobacillus plantarum strain L8, Lactobacillus plantarum strain L20
    and Lactobacillus pentosus strain S1 were tested for their cytotoxic effects through MTT assay and their ability to adhere
    and colonize on HT-29 and CCD-18Co intestinal cells as detected microscopically using light microscopy and Scanning
    Electron Microscopy (SEM). No cytotoxicity effects were observed on both intestinal cells following 24 h treatment with
    all Lactobacillus strains. Additionally, all strains demonstrated strong adhesive activity where more than 100 bacteria
    adhered to both intestinal cells although differences in the adhesion scores observed among different strains. The adhesion
    as observed via SEM showed an autoagreggative pattern and adhered as clusters on the surface of both intestinal cells.
    In conclusion, all three Lactobacillus strains are non-cytotoxic to both cells with strong adhesion ability on intestinal
    cells and this study also proved that Malaysian fermented fish are good source of probiotic bacteria.
    Matched MeSH terms: Bacterial Adhesion
  11. Aishah Faiqah Mohd Yusof, Prabhakaran P, Nur Diyana Azli, Norrakiah Abdullah Sani, Wan Syaidatul Aqma
    Sains Malaysiana, 2017;46:903-908.
    Pacifier nipples are in permanent contact with saliva and with the oral microflora therefore, act as a favoured site for the growth of biofilms. This research was conducted to identify the bacterial biofilms that has been found on the pacifiers that collected from local child nursery and to analyse the formation of biofilms by Cronobacter sp. during growth in infant formula milk. Pacifiers collected were analysed to obtain colony forming unit (CFU) and isolated bacteria were identified using several biochemical tests according to Bergey's Manual. Biofilm assay of three Cronobacter sp. were conducted using 24 wells microtiter plate and stained with 1% of crystal violet solution at different time interval: 6, 12, 18 and 24 h. The hydrophobicity of the bacterial cell suspension was evaluated using bacterial adhesion to hydrocarbons (BATH) method. Extracellular polymeric substances (EPS) analysis was done to identify percentage of carbohydrate and protein content by using phenol sulphuric acid method and Bradford method, respectively. The results obtained showed that the normal microflora bacteria were the most abundant microorganisms that were found on the pacifier with the main genus isolated was Staphylococcus sp., Enterobacteriaceae sp. and Clostridium sp. Based on biofilm and EPS analysis, Cronobacter sakazakii formed a strong biofilms after 18 h, with carbohydrate was identified as main component of EPS.
    Matched MeSH terms: Bacterial Adhesion
  12. Veerachamy S, Yarlagadda T, Manivasagam G, Yarlagadda PK
    Proc Inst Mech Eng H, 2014 Oct;228(10):1083-99.
    PMID: 25406229 DOI: 10.1177/0954411914556137
    Biofilms are a complex group of microbial cells that adhere to the exopolysaccharide matrix present on the surface of medical devices. Biofilm-associated infections in the medical devices pose a serious problem to the public health and adversely affect the function of the device. Medical implants used in oral and orthopedic surgery are fabricated using alloys such as stainless steel and titanium. The biological behavior, such as osseointegration and its antibacterial activity, essentially depends on both the chemical composition and the morphology of the surface of the device. Surface treatment of medical implants by various physical and chemical techniques are attempted in order to improve their surface properties so as to facilitate bio-integration and prevent bacterial adhesion. The potential source of infection of the surrounding tissue and antimicrobial strategies are from bacteria adherent to or in a biofilm on the implant which should prevent both biofilm formation and tissue colonization. This article provides an overview of bacterial biofilm formation and methods adopted for the inhibition of bacterial adhesion on medical implants.
    Matched MeSH terms: Bacterial Adhesion/drug effects; Bacterial Adhesion/physiology*
  13. Teh AHT, Lee SM, Dykes GA
    PLoS One, 2019;14(4):e0215275.
    PMID: 30970009 DOI: 10.1371/journal.pone.0215275
    Campylobacter jejuni is a microaerophilic bacterial species which is a major food-borne pathogen worldwide. Attachment and biofilm formation have been suggested to contribute to the survival of this fastidious bacteria in the environment. In this study the attachment of three C. jejuni strains (C. jejuni strains 2868 and 2871 isolated from poultry and ATCC 33291) to different abiotic surfaces (stainless steel, glass and polystyrene) alone or with Pseudomonas aeruginosa biofilms on them, in air at 25°C and under static or flow conditions, were investigated using a modified Robbins Device. Bacteria were enumerated and scanning electron microscopy was carried out. The results indicated that both C. jejuni strains isolated from poultry attached better to Pseudomonas aeruginosa biofilms on abiotic surfaces than to the surfaces alone under the different conditions tested. This suggests that biofilms of other bacterial species may passively protect C. jejuni against shear forces and potentially oxygen stress which then contribute to their persistence in environments which are detrimental to them. By contrast the C. jejuni ATCC 33291 strain did not attach differentially to P. aeruginosa biofilms, suggesting that different C. jejuni strains may have alternative strategies for persistence in the environment. This study supports the hypothesis that C. jejuni do not form biofilms per se under conditions they encounter in the environment but simply attach to surfaces or biofilms of other species.
    Matched MeSH terms: Bacterial Adhesion/physiology*
  14. Tan MS, White AP, Rahman S, Dykes GA
    PLoS One, 2016;11(6):e0158311.
    PMID: 27355584 DOI: 10.1371/journal.pone.0158311
    Cases of foodborne disease caused by Salmonella are frequently associated with the consumption of minimally processed produce. Bacterial cell surface components are known to be important for the attachment of bacterial pathogens to fresh produce. The role of these extracellular structures in Salmonella attachment to plant cell walls has not been investigated in detail. We investigated the role of flagella, fimbriae and cellulose on the attachment of Salmonella Typhimurium ATCC 14028 and a range of isogenic deletion mutants (ΔfliC fljB, ΔbcsA, ΔcsgA, ΔcsgA bcsA and ΔcsgD) to bacterial cellulose (BC)-based plant cell wall models [BC-Pectin (BCP), BC-Xyloglucan (BCX) and BC-Pectin-Xyloglucan (BCPX)] after growth at different temperatures (28°C and 37°C). We found that all three cell surface components were produced at 28°C but only the flagella was produced at 37°C. Flagella appeared to be most important for attachment (reduction of up to 1.5 log CFU/cm2) although both cellulose and fimbriae also aided in attachment. The csgD deletion mutant, which lacks both cellulose and fimbriae, showed significantly higher attachment as compared to wild type cells at 37°C. This may be due to the increased expression of flagella-related genes which are also indirectly regulated by the csgD gene. Our study suggests that bacterial attachment to plant cell walls is a complex process involving many factors. Although flagella, cellulose and fimbriae all aid in attachment, these structures are not the only mechanism as no strain was completely defective in its attachment.
    Matched MeSH terms: Bacterial Adhesion*
  15. Chung PY, Toh YS
    Pathog Dis, 2014 Apr;70(3):231-9.
    PMID: 24453168 DOI: 10.1111/2049-632X.12141
    Staphylococcus aureus is a Gram-positive pathogen that causes potentially life-threatening nosocomial- and community-acquired infections, such as osteomyelitis and endocarditis. Staphylococcus aureus has the ability to form multicellular, surface-adherent communities called biofilms, which enables it to survive in various sources of stress, including antibiotics, nutrient limitations, heat shock, and immune responses. Biofilm-forming capacity is now recognized as an important virulence determinant in the development of staphylococcal device-related infections. In light of the projected increase in the numbers of elderly patients who will require semi-permanent indwelling medical devices such as artificial knees and hips, we can anticipate an expanded need for new agents and treatment options to manage biofilm-associated infections in an expanding at-risk population. With better understanding of staphylococcal biofilm formation and growth, novel strategies that target biofilm-associated infections caused by S. aureus have recently been described and seem promising as future anti-biofilm therapies.
    Matched MeSH terms: Bacterial Adhesion/drug effects
  16. Dua K, de Jesus Andreoli Pinto T, Chellappan DK, Gupta G, Bebawy M, Hansbro PM
    Panminerva Med, 2018 03;60(1):35-36.
    PMID: 29370678 DOI: 10.23736/S0031-0808.18.03402-X
    Matched MeSH terms: Bacterial Adhesion
  17. Ibrahim H, Aziz AA, Yahya NA, Yap AU
    Oper Dent, 2024 Mar 01;49(2):178-188.
    PMID: 38196082 DOI: 10.2341/23-038-L
    This study examined the influence of cariogenic environments on the surface roughness of ion-releasing restorative materials (IRMs). Custom-made stainless steel molds with holes of 5 mm × 2mm were used to fabricate 60 disc-shaped specimens of each of the following materials: Activa Bioactive (AV), Beautifil Bulk Restorative (BB), Cention N (Bulk-fill) (CN), and Filtek Z350XT (FZ) (Control). Baseline surface roughness (Ra) measurements were obtained using an optical 3D measurement machine (Alicona Imaging GmbH, Graz, Austria). The specimens were then randomly divided into five subgroups (n=12) and exposed to 10 ml of the following mediums at 37°C: distilled water (DW), demineralization solution (DM), remineralization solution (RM), pH cycling (PC) and air (AR) (control). Ra measurements were again recorded after one week and one month, followed by statistical evaluations with two-way analysis of variance (ANOVA) to determine interactions between materials and mediums. One-way ANOVA and post hoc Games Howell tests were performed for intergroup comparisons at a significance level of 0.05. Mean Ra values ranged from 0.085 ± 0.004 (µm) to 0.198 ± 0.001 µm for the various material-medium combinations. All IRMs showed significant differences in Ra values after exposure to the aqueous mediums. The smoothest surfaces were observed in the AR for all materials. When comparing materials, AV presented the roughest surfaces for all mediums. All IRM materials showed increased surface roughness over time in all cariogenic environments but were below the threshold value for bacterial adhesion, except for AV 1-month post immersion with pH cycling. Therefore, besides AV, the surface roughness of IRMs did not deteriorate to an extent that it is clinically relevant.
    Matched MeSH terms: Bacterial Adhesion
  18. Santiago C, Lim KH, Loh HS, Ting KN
    Molecules, 2015 Mar 10;20(3):4473-82.
    PMID: 25764489 DOI: 10.3390/molecules20034473
    Formation of biofilms is a major factor for nosocomial infections associated with methicillin-resistance Staphylococcus aureus (MRSA). This study was carried out to determine the ability of a fraction, F-10, derived from the plant Duabanga grandiflora to inhibit MRSA biofilm formation. Inhibition of biofilm production and microtiter attachment assays were employed to study the anti-biofilm activity of F-10, while latex agglutination test was performed to study the influence of F-10 on penicillin-binding protein 2a (PBP2a) level in MRSA biofilm. PBP2a is a protein that confers resistance to beta-lactam antibiotics. The results showed that, F-10 at minimum inhibitory concentration (MIC, 0.75 mg/mL) inhibited biofilm production by 66.10%; inhibited cell-surface attachment by more than 95%; and a reduced PBP2a level in the MRSA biofilm was observed. Although ampicilin was more effective in inhibiting biofilm production (MIC of 0.05 mg/mL, 84.49%) compared to F-10, the antibiotic was less effective in preventing cell-surface attachment. A higher level of PBP2a was detected in ampicillin-treated MRSA showing the development of further resistance in these colonies. This study has shown that F-10 possesses anti-biofilm activity, which can be attributed to its ability to reduce cell-surface attachment and attenuate the level of PBP2a that we postulated to play a crucial role in mediating biofilm formation.
    Matched MeSH terms: Bacterial Adhesion/drug effects
  19. Mutha NVR, Mohammed WK, Krasnogor N, Tan GYA, Choo SW, Jakubovics NS
    Mol Oral Microbiol, 2018 12;33(6):450-464.
    PMID: 30329223 DOI: 10.1111/omi.12248
    Cell-cell interactions between genetically distinct bacteria, known as coaggregation, are important for the formation of mixed-species biofilms such as dental plaque. Interactions lead to gene regulation in the partner organisms that may be critical for adaptation and survival in mixed-species biofilms. Here, gene regulation responses to coaggregation between Streptococcus gordonii and Fusobacterium nucleatum were studied using dual RNA-Seq. Initially, S. gordonii was shown to coaggregate strongly with F. nucleatum in buffer or human saliva. Using confocal laser scanning microscopy and transmission electron microscopy, cells of different species were shown to be evenly distributed throughout the coaggregate and were closely associated with one another. This distribution was confirmed by serial block face sectioning scanning electron microscopy, which provided high resolution three-dimensional images of coaggregates. Cell-cell sensing responses were analysed 30 minutes after inducing coaggregation in human saliva. By comparison with monocultures, 16 genes were regulated following coaggregation in F. nucleatum whereas 119 genes were regulated in S. gordonii. In both species, genes involved in amino acid and carbohydrate metabolism were strongly affected by coaggregation. In particular, one 8-gene operon in F. nucleatum encoding sialic acid uptake and catabolism was up-regulated 2- to 5-fold following coaggregation. In S. gordonii, a gene cluster encoding functions for phosphotransferase system-mediated uptake of lactose and galactose was down-regulated up to 3-fold in response to coaggregation. The genes identified in this study may play key roles in the development of mixed-species communities and represent potential targets for approaches to control dental plaque accumulation.
    Matched MeSH terms: Bacterial Adhesion*
  20. Furusawa G, Hartzell PL, Navaratnam V
    Microbiology (Reading), 2015 Oct;161(10):1933-1941.
    PMID: 26306656 DOI: 10.1099/mic.0.000158
    Ixotrophy is a process that enables certain microbes to prey on other cells. The ability of cells to aggregate or adhere is thought to be a significant initial step in ixotrophy. The gliding, multicellular filamentous bacterium Aureispira sp. CCB-QB1 belongs to the family Saprospiraceae and preys on bacteria such as Vibrio sp. in seawater. Adhesion and cell aggregation were coincident with preying and were hypothesized to play an important role in the ixotrophy in this bacterium. To test this hypothesis, experiments to elucidate the mechanisms of aggregation or adhesion in this bacterium were performed. The ability of Aureispira QB1 to adhere and aggregate to prey bacterium, Vibrio sp., required divalent cations, especially calcium ions. In the presence of calcium, Aureispira QB1 cells captured 99 % of Vibrio sp. cells after 60 min of incubation. Toluidine blue O, which binds acidic polysaccharides, bound to Aureispira QB1 and inhibited adhesion of Aureispira QB1. These results suggest that acidic polysaccharides are needed for aggregation or adhesion of Aureispira and that calcium ions play a significant role in these phenomena.
    Matched MeSH terms: Bacterial Adhesion*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links