Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Nami Y, Haghshenas B, Yari Khosroushahi A
    Food Sci Nutr, 2017 05;5(3):554-563.
    PMID: 28572941 DOI: 10.1002/fsn3.430
    Different herbal biopolymers were used to encapsulate Enterococcus durans IW3 to enhance its storage stability in yogurt and subsequently its endurance in gastrointestinal condition. Nine formulations of encapsulation were performed using alginate (ALG), ALG-psyllium (PSY), and ALG-gum Arabic (GA) blends. The encapsulation efficiency of all formulations, tolerance of encapsulated E. durans IW3 against low pH/high bile salt concentration, storage lifetime, and release profile of cells in natural condition of yogurt were evaluated. Result revealed 98.6% encapsulation efficiency and 76% survival rate for all formulation compared with the unencapsulated formulation cells (43%). The ALG-PSY and ALG-GA formulations have slightly higher survival rates at low pH and bile salt condition (i.e., 76-93% and 81-95%, respectively) compared with the ALG formulation. All encapsulated E. durans IW3 was released from the prepared beads of ALG after 90 min, whereas both probiotics encapsulated in ALG-GA and ALG-PSY were released after 60 min. Enterococcus durans IW3 was successfully encapsulated in ALG, ALG-GA, and ALG-PSY beads prepared by extrusion method. ALG-GA and ALG-PSY beads are suitable delivery carriers for the oral administration of bioactive compounds like probiotics. The GA and PSY gels exhibited better potential for encapsulation of probiotic bacteria cells because of the amendment of ALG difficulties and utilization of therapeutic and prebiotic potentials of these herbal biopolymers.
    Matched MeSH terms: Bile Acids and Salts
  2. Abu Bakar MH, Sarmidi MR, Cheng KK, Ali Khan A, Suan CL, Zaman Huri H, et al.
    Mol Biosyst, 2015 Jul;11(7):1742-74.
    PMID: 25919044 DOI: 10.1039/c5mb00158g
    Metabolomic studies on obesity and type 2 diabetes mellitus have led to a number of mechanistic insights into biomarker discovery and comprehension of disease progression at metabolic levels. This article reviews a series of metabolomic studies carried out in previous and recent years on obesity and type 2 diabetes, which have shown potential metabolic biomarkers for further evaluation of the diseases. Literature including journals and books from Web of Science, Pubmed and related databases reporting on the metabolomics in these particular disorders are reviewed. We herein discuss the potential of reported metabolic biomarkers for a novel understanding of disease processes. These biomarkers include fatty acids, TCA cycle intermediates, carbohydrates, amino acids, choline and bile acids. The biological activities and aetiological pathways of metabolites of interest in driving these intricate processes are explained. The data from various publications supported metabolomics as an effective strategy in the identification of novel biomarkers for obesity and type 2 diabetes. Accelerating interest in the perspective of metabolomics to complement other fields in systems biology towards the in-depth understanding of the molecular mechanisms underlying the diseases is also well appreciated. In conclusion, metabolomics can be used as one of the alternative approaches in biomarker discovery and the novel understanding of pathophysiological mechanisms in obesity and type 2 diabetes. It can be foreseen that there will be an increasing research interest to combine metabolomics with other omics platforms towards the establishment of detailed mechanistic evidence associated with the disease processes.
    Matched MeSH terms: Bile Acids and Salts/metabolism
  3. Chan WK, Wong VW
    Lancet Gastroenterol Hepatol, 2019 10;4(10):747-749.
    PMID: 31345779 DOI: 10.1016/S2468-1253(19)30183-9
    Matched MeSH terms: Bile Acids and Salts
  4. Vasavan T, Ferraro E, Ibrahim E, Dixon P, Gorelik J, Williamson C
    Biochim Biophys Acta Mol Basis Dis, 2018 04;1864(4 Pt B):1345-1355.
    PMID: 29317337 DOI: 10.1016/j.bbadis.2017.12.039
    Cardiac dysfunction has an increased prevalence in diseases complicated by liver cirrhosis such as primary biliary cholangitis and primary sclerosing cholangitis. This observation has led to research into the association between abnormalities in bile acid metabolism and cardiac pathology. Approximately 50% of liver cirrhosis cases develop cirrhotic cardiomyopathy. Bile acids are directly implicated in this, causing QT interval prolongation, cardiac hypertrophy, cardiomyocyte apoptosis and abnormal haemodynamics of the heart. Elevated maternal serum bile acids in intrahepatic cholestasis of pregnancy, a disorder which causes an impaired feto-maternal bile acid gradient, have been associated with fatal fetal arrhythmias. The hydrophobicity of individual bile acids in the serum bile acid pool is of relevance, with relatively lipophilic bile acids having a more harmful effect on the heart. Ursodeoxycholic acid can reverse or protect against these detrimental cardiac effects of elevated bile acids.
    Matched MeSH terms: Bile Acids and Salts/blood; Bile Acids and Salts/metabolism*; Bile Acids and Salts/chemistry
  5. Abigail Li Yen Lew, Nurzafirah Mazlan, Siti Marwanis Anua, Thung Tze Young
    MyJurnal
    Introduction: The outbreaks of foodborne diseases have been linked to the consumption of contaminated seafood. This research aims to screen the bacteria from the sea cucumbers Acaudina molpadioides collected from Pulau Langkawi. Methods: A total of 22 sea cucumber samples were collected randomly from Pulau Langkawi, Kedah, Malaysia. The samples were isolated and identified for the presence of bacteria using the conventional culture-based method. Presumptive bacteria colonies were subjected to various biochemical and antimicrobial susceptibility tests. Results: There were no bacterial growth in Hektoen Enteric (HE) agar and Thiosulphate-Citrate-Bile Salt (TCBS) agar. Positive samples were isolated from MacConkey (MAC) agar with 6 samples were Staphylococcus spp. (27.27%), 14 samples were Proteus spp. (63.63%) and 2 samples were Bacillus spp. (9.01%). Among these isolates, highest resistance was found against Ampicillin (45%) followed by Tetracycline (40%). Conclusion: The results indicate that the sea cucumbers Acaudina molpadioides were contaminated with potential bacteria. There is a need for adequate consumer protection measures.
    Matched MeSH terms: Bile Acids and Salts
  6. Abdelhafez MMA, Ahmed KAM, Than WW, Baharuddin DMP, Kadir F, Jeffree S, et al.
    J Obstet Gynaecol, 2022 Oct;42(7):2550-2557.
    PMID: 35666947 DOI: 10.1080/01443615.2022.2081801
    Intrahepatic cholestasis of pregnancy (ICP) is the commonest among the specific dermatoses of pregnancy. The disease is characterised by intense pruritus and specifically by elevated bile acid levels and owing to the rarity of data published in this context, the disease carries a great challenge in both diagnosis and management. The disease is associated with significant maternal as well as perinatal adverse effects, hence, this article aims at improving the knowledge of the women's health carers with the up-to-date and evidence-based, whenever possible, recommendations while managing patients with ICP.
    Matched MeSH terms: Bile Acids and Salts
  7. Lim PS, Loke CF, Ho YW, Tan HY
    J Appl Microbiol, 2020 Nov;129(5):1374-1388.
    PMID: 32356362 DOI: 10.1111/jam.14678
    AIMS: To determine the mechanism underlying the serum cholesterol reduction effect by probiotics isolated from local fermented tapioca (Tapai).

    METHODS AND RESULTS: Lactic acid bacteria strains were isolated and examined for acid tolerance, bile salt resistance and hypocholesterolemic properties. Among the isolates, Lactobacillus plantarum TAR4 showed the highest cholesterol reduction ability (48·01%). The focus in the in vivo trial was to elucidate the cholesterol balance from findings pertaining to serum cholesterol reduction in rat model fed with high fat diet via oral administration. Rats fed with high-cholesterol diet supplemented with Lact. plantarum TAR4 showed significant reduction in serum total cholesterol (29·55%), serum triglyceride (45·31%) and liver triglyceride (23·44%) as compared to high-cholesterol diet (HCD) group. There was a significant increment in faecal triglyceride (45·83%) and faecal total bile acid (384·95%) as compared to HCD group.

    CONCLUSIONS: The findings showed that probiotic Lact. plantarum TAR4 supplementation reduced the absorption of bile acids for enterohepatic recycling and increased the catabolism of cholesterol to bile acids and not by suppressing the rate of cholesterol synthesis.

    SIGNIFICANCE AND IMPACT OF STUDY: Probiotic supplements could provide a new nonpharmacological alternative to reduce cardiovascular risk factors.

    Matched MeSH terms: Bile Acids and Salts/metabolism
  8. Tang, J-Y-H., Farhana Sakinah, M.R., Nakaguchi, Y., Nishibuchi, M., Chai, L-C., New, C.Y., et al.
    Food Research, 2018;2(5):447-452.
    MyJurnal
    This goal of this study was to investigate the presence of Vibrio cholerae in street food,
    namely satar and otak-otak, using Loop-Mediated Isothermal Amplification (LAMP),
    multiplex Polymerase Chain Reaction (mPCR) and conventional plating on Thiosulphate
    Citrate Bile-Salt Sucrose (TCBS) agar methods. A total of 78 satar and 35 otak-otak were
    purchased from different districts of Terengganu (Besut, Setiu, Kuala Terengganu and
    Kemaman). V. cholerae was found in satar with LAMP (10.3%), mPCR (10.3%) and
    plating (0%). No V. cholerae was found in otak-otak using the three methods. This might
    be due to V. cholerae able to survive in satar after grilling due to its thickness which may
    contribute to undercooking. This study concluded that low presence of V. cholerae in satar
    and otak-otak can be detected by molecular methods but not the conventional plating
    method. LAMP assay is a useful tool for rapid detection of pathogens in food due to its
    simplicity, highly sensitive and visual interpretation capability. Though the prevalence of
    V. cholerae was low in the samples, proper handling of this food will help in reducing the
    risk of acquiring infection from V. cholerae in contaminated samples.
    Matched MeSH terms: Bile Acids and Salts
  9. Siti Farah Alwani Mohd Nawi, Zaini Mohd Zain, Muhammad Zarif Zahari, Anis Amalina Abdul Hamid, Nur Fakhriah Ahmad Afandi, Siti Nur Fathihah Azmi
    Serving raw oysters with lemon juice is a delicacy in many restaurants in
    Malaysia. Oysters (Crassostrea virginica) live in the seacoast and they share the same
    environment as Vibrio parahaemolyticus. Consumption of raw oysters contaminated with V.
    parahaemolyticus can lead to severe gastroenteritis. A study was performed to determine
    whether lemon (Citrus limon) juice is able to inhibit the growth of V. parahaemolyticus after
    being inoculated in raw oysters. Methods: Frozen oysters bought from a local supplier
    weighing 6 g each were minced and placed in two bottles using sterile technique.
    Approximately 1 ml of 107 CFU of V. parahaemolyticus (ATCC strain 17802) was added and
    mixed in both bottles. The mixture was treated with 1 ml of lemon juice in only one of the
    bottles and the other bottle served as a control. At every 30 s intervals for 2 min, 1 g of the
    sample was taken for enumeration of viable cells onto thiosulphate citrate bile salt sucrose
    (TCBS). Results: After 30 s of treatment with the lemon juice, it was observed that the
    number of colonies in the treated samples reduced from 7 Log to 3 Log. Subsequently, no
    viable V. parahaemolyticus was seen. It was also observed that there were 3 Log reductions
    of V. parahaemolyticus after 30 s in untreated samples, however the number of colonies
    remained stable until the end of the experiment. Conclusion: This study therefore shows
    that lemon juice has some antimicrobial effect on V. parahaemolyticus in raw oysters.
    Matched MeSH terms: Bile Acids and Salts
  10. Siti Farah Alwani Mohd Nawi, Zaini Mohd Zain, Muhammad Zarif Zahari, Anis Amalina Abdul Hamid, Nur Fakhriah Ahmad Afandi, Siti Nur Fathihah Azmi
    MyJurnal
    Serving raw oysters with lemon juice is a delicacy in many restaurants in
    Malaysia. Oysters (Crassostrea virginica) live in the seacoast and they share the same
    environment as Vibrio parahaemolyticus. Consumption of raw oysters contaminated with V.
    parahaemolyticus can lead to severe gastroenteritis. A study was performed to determine
    whether lemon (Citrus limon) juice is able to inhibit the growth of V. parahaemolyticus after
    being inoculated in raw oysters. Methods: Frozen oysters bought from a local supplier
    weighing 6 g each were minced and placed in two bottles using sterile technique.
    Approximately 1 ml of 107 CFU of V. parahaemolyticus (ATCC strain 17802) was added and
    mixed in both bottles. The mixture was treated with 1 ml of lemon juice in only one of the
    bottles and the other bottle served as a control. At every 30 s intervals for 2 min, 1 g of the
    sample was taken for enumeration of viable cells onto thiosulphate citrate bile salt sucrose
    (TCBS). Results: After 30 s of treatment with the lemon juice, it was observed that the
    number of colonies in the treated samples reduced from 7 Log to 3 Log. Subsequently, no
    viable V. parahaemolyticus was seen. It was also observed that there were 3 Log reductions
    of V. parahaemolyticus after 30 s in untreated samples, however the number of colonies
    remained stable until the end of the experiment. Conclusion: This study therefore shows
    that lemon juice has some antimicrobial effect on V. parahaemolyticus in raw oysters.
    Matched MeSH terms: Bile Acids and Salts
  11. Tan SN, Sim SP
    BMC Med Genomics, 2019 01 15;12(1):9.
    PMID: 30646906 DOI: 10.1186/s12920-018-0465-4
    BACKGROUND: It has been found that chronic rhinosinusitis (CRS) increases the risk of developing nasopharyngeal carcinoma (NPC). CRS can be caused by gastro-oesophageal reflux (GOR) that may reach nasopharynx. The major component of refluxate, bile acid (BA) has been found to be carcinogenic and genotoxic. BA-induced apoptosis has been associated with various cancers. We have previously demonstrated that BA induced apoptosis and gene cleavages in nasopharyngeal epithelial cells. Chromosomal cleavage occurs at the early stage of both apoptosis and chromosome rearrangement. It was suggested that chromosome breaks tend to cluster in the region containing matrix association region/scaffold attachment region (MAR/SAR). This study hypothesised that BA may cause chromosome breaks at MAR/SAR leading to chromosome aberrations in NPC. This study targeted the AF9 gene located at 9p22 because 9p22 is a deletion hotspot in NPC.

    METHODS: Potential MAR/SAR sites were predicted in the AF9 gene by using MAR/SAR prediction tools. Normal nasopharyngeal epithelial cells (NP69) and NPC cells (TWO4) were treated with BA at neutral and acidic pH. Inverse-PCR (IPCR) was used to identify chromosome breaks in SAR region (contains MAR/SAR) and non-SAR region (does not contain MAR/SAR). To map the chromosomal breakpoints within the AF9 SAR and non-SAR regions, DNA sequencing was performed.

    RESULTS: In the AF9 SAR region, the gene cleavage frequencies of BA-treated NP69 and TWO4 cells were significantly higher than those of untreated control. As for the AF9 non-SAR region, no significant difference in cleavage frequency was detected between untreated and BA-treated cells. A few breakpoints detected in the SAR region were mapped within the AF9 region that was previously reported to translocate with the mixed lineage leukaemia (MLL) gene in an acute lymphoblastic leukaemia (ALL) patient.

    CONCLUSIONS: Our findings suggest that MAR/SAR may be involved in defining the positions of chromosomal breakages induced by BA. Our report here, for the first time, unravelled the relation of these BA-induced chromosomal breakages to the AF9 chromatin structure.

    Matched MeSH terms: Bile Acids and Salts/pharmacology*
  12. Tan SN, Sim SP
    BMC Cancer, 2018 04 12;18(1):409.
    PMID: 29649994 DOI: 10.1186/s12885-018-4327-4
    BACKGROUND: Chronic rhinosinusitis (CRS) increases the risk of developing nasopharyngeal carcinoma (NPC) while nasopharyngeal reflux is known to be one of the major aetiological factors of CRS. Bile acid (BA), the component of gastric duodenal contents, has been recognised as a carcinogen. BA-induced apoptosis was suggested to be involved in human malignancies. Cells have the potential and tendency to survive apoptosis. However, cells that evade apoptosis upon erroneous DNA repair may carry chromosome rearrangements. Apoptotic nuclease, caspase-activated deoxyribonuclease (CAD) has been implicated in mediating translocation in leukaemia. We hypothesised that BA-induced apoptosis may cause chromosome breaks mediated by CAD leading to chromosome rearrangement in NPC. This study targeted the AF9 gene located at 9p22 because 9p22 is one of the most common deletion sites in NPC.

    METHODS: We tested the ability of BA at neutral and acidic pH in inducing phosphatidylserine (PS) externalisation, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) disruption, and caspase 3/7 activity in normal nasopharyngeal epithelial (NP69) and NPC (TWO4) cells. Inverse-PCR (IPCR) was employed to detect AF9 gene cleavages. To investigate the role of CAD in mediating these cleavages, caspase inhibition was performed. IPCR bands representing AF9 cleaved fragments were sequenced.

    RESULTS: BA-treated cells showed higher levels of PS externalisation, ROS production, MMP loss and caspase 3/7 activity than untreated control cells. The effect of BA in the induction of these intracellular events was enhanced by acid. BA at neutral and acidic pH also induced significant cleavage of the AF9 gene. These BA-induced gene cleavages were inhibited by Z-DEVD-FMK, a caspase-3 inhibitor. Intriguingly, a few chromosome breaks were identified within the AF9 region that was previously reported to participate in reciprocal translocation between the mixed lineage leukaemia (MLL) and AF9 genes in an acute lymphoblastic leukaemia (ALL) patient.

    CONCLUSIONS: These findings suggest a role for BA-induced apoptosis in mediating chromosome rearrangements in NPC. In addition, CAD may be a key player in chromosome cleavages mediated by BA-induced apoptosis. Persistent exposure of sinonasal tract to gastric duodenal refluxate may increase genomic instability in surviving cells.

    Matched MeSH terms: Bile Acids and Salts/metabolism*; Bile Acids and Salts/pharmacology
  13. Khalil ES, Abd Manap MY, Mustafa S, Alhelli AM, Shokryazdan P
    Molecules, 2018 Feb 13;23(2).
    PMID: 29438288 DOI: 10.3390/molecules23020398
    Tempoyak is a functional Malaysian food (an acid-fermented condiment) which is produced from the pulp of the durian (Durio zibethinus) fruit. The current study aimed to isolate and identify potential exopolysaccharide (EPS)-producing Lactobacillus strains from tempoyak for potential use as probiotics. Seven isolates (DUR2, DUR4, DUR5, DUR8, DUR12, DUR18, and DUR20) out of 44 were able to produce EPS, and exhibited resistance to acid and bile salt compared to the reference strains Lactobacillus rhmnosus (ATCC53103) and L. plantarum (ATCC8014). The seven isolated strains belonged to five different species-L. plantarum, L. fermentum, L. crispatus, L. reuteri, and L. pentosus-which were identified using API 50 CHL and 16S rRNA gene sequences (Polymerase chain reaction, PCR - based). The seven strains displayed different ability to produce EPS (100-850 mg/L). Isolates exhibited a high survivability to acid (pH 3.0), bile salts (0.3%), and gastrointestinal tract model (<70%). Results showed that the auto-aggregation and cell surface hydrophobicity ranged from 39.98% to 60.09% and 50.80% to 80.53%, respectively, whereas, the highest co-aggregation value (66.44%) was observed by L. fermentum (DUR8) with Pseudomonas aeruginosa. The isolates showed good inhibitory activity against tested pathogens, high antioxidant activity (32.29% to 73.36%), and good ability to reduce cholesterol (22.55% to 75.15%). Thus, the seven tested strains have value as probiotics.
    Matched MeSH terms: Bile Acids and Salts/pharmacology
  14. Dianawati D, Mishra V, Shah NP
    J Food Sci, 2016 Jun;81(6):M1472-9.
    PMID: 27145163 DOI: 10.1111/1750-3841.13313
    Production of probiotic food supplements that are shelf-stable at room temperature has been developed for consumer's convenience, but information on the stability in acid and bile environment is still scarce. Viability and acid and bile tolerance of microencapsulated Bifidobacterium spp. and Lactobacillus acidophilus and 4 commercial probiotic supplements were evaluated. Bifidobacterium and L. acidophilus were encapsulated with casein-based emulsion using spray drying. Water activity (aw ) of the microspheres containing Bifidobacterium or L. acidophilus (SD GM product) was adjusted to 0.07 followed by storage at 25 °C for 10 wk. Encapsulated Bifidobacterium spp. and Lactobacillus acidophilus and 4 commercial probiotic supplement products (AL, GH, RE, and BM) were tested. Since commercial probiotic products contained mixed bacteria, selective media MRS-LP (containing L-cysteine and Na-propionate) and MRS-clindamycin agar were used to grow Bifidobacterium spp. or L. acidophilus, respectively, and to inhibit the growth of other strains. The results showed that aw had a strong negative correlation with the viability of dehydrated probiotics of the 6 products. Viable counts of Bifidobacterium spp. and L. acidophilus of SD GM, AL, and GH were between 8.3 and 9.2 log CFU/g, whereas that of BM and RE were between 6.7 and 7.3 log CFU/g. Bifidobacterium in SD GM, in AL, and in GH products and L. acidophilus in SD GM, in AL, and in BM products demonstrated high tolerance to acid. Most of dehydrated probiotic bacteria were able to survive in bile environment except L. acidophilus in RE product. Exposure to gastric juice influenced bacterial survivability in subsequent bile environment.
    Matched MeSH terms: Bile Acids and Salts/pharmacology
  15. Syakila RN, Lim SM, Agatonovic-Kustrin S, Lim FT, Ramasamy K
    Anal Bioanal Chem, 2019 Feb;411(6):1181-1192.
    PMID: 30680424 DOI: 10.1007/s00216-018-1544-2
    The cholesterol-lowering properties of 12 lactic acid bacteria (LAB) in the absence or presence of 0.3% bile salts were assessed and compared quantitatively and qualitatively in vitro. A new, more sensitive and cost-effective high-performance thin-layer chromatography method combined with digital image evaluation of derivatised chromatographic plates was developed and validated to quantify cholesterol in LAB culture media. The performance of the method was compared with that of the o-phthalaldehyde method. For qualitative assessment, assimilated fluorescently tagged cholesterol was visualised by confocal microscopy. All LAB strains exhibited a cholesterol-lowering effect of various degrees (19-59% in the absence and 14-69% in the presence of bile salts). Lactobacillus plantarum LAB12 and Pentosaceus pentosaceus LAB6 were the two best strains of lactobacilli and pediococci. They lowered cholesterol levels by 59% and 54%, respectively, in the absence and by 69% and 58%, respectively, in the presence of bile salts. Confocal microscopy showed that cholesterol was localised at the outermost cell membranes of LAB12 and LAB6. The present findings warrant in-depth in vivo study. Graphical abstract (A) 3D plots based on scan at 525 nm of (B) derivatized HPTLC plate of separated cholesterol and (C) confocal microscopic image showing the localisation of NBD-cholesterol assimilated by LAB.
    Matched MeSH terms: Bile Acids and Salts/metabolism
  16. Koh WY, Utra U, Ahmad R, Rather IA, Park YH
    Food Sci Biotechnol, 2018 Oct;27(5):1369-1376.
    PMID: 30319846 DOI: 10.1007/s10068-018-0360-y
    A total of eight strains of lactic acid bacteria were isolated from water kefir grains and assessed for their in vitro α-glucosidase inhibitory activity. Lactobacillus mali K8 demonstrated significantly higher inhibition as compared to the other strains, thus was selected for in vitro probiotic potential characterization, antibiotic resistance, hemolytic activity and adaptation to pumpkin fruit puree. L. mali K8 demonstrated tolerance to pH 2.5 and resisted the damaging effects of bile salts, pepsin and pancreatin, comparable to that of Lactobacillus rhamnosus GG ATCC 53103 (reference strain). Lack of hemolytic activity and susceptibility to the five standard antibiotics indicated the safety of the K8 strain. This strain showed singular properties to be used as starters in the pumpkin fruit puree fermentation. These preliminary in vitro tests indicated the safety and functionality of the K8 strain and its potential as a probiotic candidate.
    Matched MeSH terms: Bile Acids and Salts
  17. Cheong AM, Jessica Koh JX, Patrick NO, Tan CP, Nyam KL
    J Food Sci, 2018 Mar;83(3):854-863.
    PMID: 29412455 DOI: 10.1111/1750-3841.14038
    This study aimed to evaluate the effect of kenaf seed oil (KSO), kenaf seed oil-in-water macroemulsion (KSOM), kenaf seed oil-in-water nanoemulsions (KSON), and emulsifier mixtures (EM) on serum lipid profile, liver oxidative status, and histopathological changes in high-cholesterol fed rats. Stability and characteristic of KSOM and KSON were carried out prior to in vivo study. Forty-two Sprague-Dawley rats were divided into 7 groups (6 rats each) and induced hypercholesterolemia by feeding high cholesterol diet (HCD) for 14 days prior to treatments. Different treatments were introduced on day 15 to 29 while supplemented with HCD and removal of HCD during treatment on day 30 to 43, except for HCD group. Body weight and serum lipid profiles were measured at 3 different points: after hypercholesterolemia was induced, on day 29, and at the end of the experiment. Relative liver weight, atherogenic index, coronary risk index, and fecal total bile acids were also determined at the end of experiment. KSON showed significantly higher stability than KSOM and FTIR exhibited good encapsulation of KSO after 1.5 years of storage. Serum total cholesterol, low density lipoprotein cholesterol, lipid peroxidation levels in HCD group without treatment were significantly higher compared to normal control group and all treatment groups. All samples demonstrated hypocholesterolemic effect, but KSON exhibited higher efficiency in cholesterol-lowering properties, weight control and decreased liver fat as confirmed by histopathological evaluation. The overall results revealed that the efficacy of different treatments was in descending order of KSON, KSO, KSOM, and EM.

    PRACTICAL APPLICATION: Kenaf seed oil-in-water nanoemulsion (KSON) has the potential to be used as a natural alternative to the synthetic hypocholesterolemic drug in the future. However, larger sample size and clinical trial are needed to confirm on this potential application. In addition, treatment with KSON was suggested to prevent cardiovascular disease and fatty liver.

    Matched MeSH terms: Bile Acids and Salts/metabolism
  18. Yeo SK, Liong MT
    Int J Food Sci Nutr, 2012 Nov;63(7):821-31.
    PMID: 22264088 DOI: 10.3109/09637486.2011.652942
    The objective of this study was to evaluate the effects of ultraviolet (UV) radiation (UVB; 90 J/m²) on growth, bioconversion of isoflavones and probiotic properties of parent and subsequent passages of L. casei FTDC 2113. UV radiation significantly enhanced (P < 0.05) the growth of parent cells in mannitol-soymilk fermented at 37°C for 24 h. This had led to an enhanced intracellular and extracellular β-glucosidase activity with a subsequent increase in bioconversion of isoflavones in mannitol-soymilk (P < 0.05). UV radiation also promoted (P < 0.05) the tolerance of parent cells towards acidic condition (pH 2 and 3) and intestinal bile salts (oxgall, taurocholic and cholic acid). In addition, parent treated cells also exhibited better (P < 0.05) adhesion ability to mucin and antimicrobial activity compared to that of the control. All these positive effects of UV radiation were only prevalent in the parent cells without inheritance by first, second and third passage of cells. Although temporary, our results suggested that UV radiation could enhance the bioactive and probiotic potentials of L. casei FTDC 2113, and thus could be applied for the production of probiotic products with enhanced bioactivity.
    Matched MeSH terms: Bile Acids and Salts/metabolism
  19. Rohawi NS, Ramasamy K, Agatonovic-Kustrin S, Lim SM
    PMID: 29894935 DOI: 10.1016/j.jchromb.2018.06.009
    A quantitative assay using high-performance thin-layer chromatography (HPTLC) was developed to investigate bile salt hydrolase (BSH) activity in Pediococcus pentosaceus LAB6 and Lactobacillus plantarum LAB12 probiotic bacteria isolated from Malaysian fermented food. Lactic acid bacteria (LAB) were cultured in de Man Rogosa and Sharpe (MRS) broth containing 1 mmol/L of sodium-based glyco- and tauro-conjugated bile salts for 24 h. The cultures were centrifuged and the resultant cell free supernatant was subjected to chromatographic separation on a HPTLC plate. Conjugated bile salts were quantified by densitometric scans at 550 nm and results were compared to digital image analysis of chromatographic plates after derivatisation with anisaldehyde/sulfuric acid. Standard curves for bile salts determination with both methods show good linearity with high coefficient of determination (R2) between 0.97 and 0.99. Method validation indicates good sensitivity with low relative standard deviation (RSD) (<10%), low limits of detection (LOD) of 0.4 versus 0.2 μg and limit of quantification (LOQ) of 1.4 versus 0.7 μg, for densitometric vs digital image analysis method, respectively. The bile salt hydrolase activity was found to be higher against glyco- than tauro-conjugated bile salts (LAB6; 100% vs >38%: LAB12; 100% vs >75%). The present findings strongly show that quantitative analysis via digitally-enhanced HPTLC offers a rapid quantitative analysis for deconjugation of bile salts by probiotics.
    Matched MeSH terms: Bile Acids and Salts/analysis*; Bile Acids and Salts/metabolism*
  20. Letchumanan V, Chan KG, Khan TM, Bukhari SI, Ab Mutalib NS, Goh BH, et al.
    Front Microbiol, 2017;8:728.
    PMID: 28484445 DOI: 10.3389/fmicb.2017.00728
    Bacteria must develop resistance to various inhospitable conditions in order to survive in the human gastrointestinal tract. Bile, which is secreted by the liver, and plays an important role in food digestion also has antimicrobial properties and is able to disrupt cellular homeostasis. Paradoxically, although bile is one of the guts defenses, many studies have reported that bacteria such as Vibrio parahaemolyticus can sense bile and use its presence as an environmental cue to upregulate virulence genes during infection. This article aims to discuss how bile is detected by V. parahaemolyticus and its role in regulating type III secretion system 2 leading to human infection. This bile-bacteria interaction pathway gives us a clearer understanding of the biochemical and structural analysis of the bacterial receptors involved in mediating a response to bile salts which appear to be a significant environmental cue during initiation of an infection.
    Matched MeSH terms: Bile Acids and Salts
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links