Displaying publications 1 - 20 of 129 in total

Abstract:
Sort:
  1. Norsyahida A, Rahmah N, Ahmad RM
    Lett Appl Microbiol, 2009 Nov;49(5):544-50.
    PMID: 19832937 DOI: 10.1111/j.1472-765X.2009.02694.x
    To investigate the effects of feeding and induction strategies on the production of BmR1 recombinant antigen.
    Matched MeSH terms: Brugia malayi/immunology
  2. Mak JW, Navaratnam V, Grewel JS, Mansor SM, Ambu S
    Am J Trop Med Hyg, 1993 Apr;48(4):591-6.
    PMID: 8480868
    A clinical trial on the efficacy of a single oral dose of ivermectin at 20, 50, 100, and 200 micrograms/kg was carried out in 40 subjects with subperiodic Brugia malayi microfilaremia. There was no significant difference in the clearance of microfilaremia in the four treatment groups, and the lowest geometric mean microfilarial count (GMC) achieved in the 40 subjects was 8.8/ml or 8.3% of the initial count (106.1/ml), at two weeks post-treatment. The GMC started to increase at one month post-treatment and by six months was 22.2% of the initial GMC. Only 27.5%, 23.1%, 15.0%, and 18.9% of subjects were amicrofilaremic at two, four, 12, and 24 weeks post-treatment, respectively. Mild fever in 35% of the subjects was the primary side reaction and was more common in those with microfilarial counts > or = 500/ml (85.7%) than in those with counts < 500/ml (32%). The clearance of B. malayi microfilaremia by ivermectin was less rapid than that reported for Wuchereria bancrofti. The smaller number of side reactions encountered in the present study compared with those reported for bancroftian filariasis is probably related to the lower microfilarial density in the present subjects. Since ivermectin at a single oral dose of 20-200 micrograms/kg can reduce the GMC to less than 10% at two weeks and maintain it below 25% of the initial level even at six months post-treatment, it is recommended that the drug be seriously evaluated for use in the control of brugian filariasis.
    Matched MeSH terms: Brugia malayi*
  3. Uni S, Mat Udin AS, Agatsuma T, Saijuntha W, Junker K, Ramli R, et al.
    Parasit Vectors, 2017 Apr 20;10(1):194.
    PMID: 28427478 DOI: 10.1186/s13071-017-2105-9
    BACKGROUND: The filarial nematodes Wuchereria bancrofti (Cobbold, 1877), Brugia malayi (Brug, 1927) and B. timori Partono, Purnomo, Dennis, Atmosoedjono, Oemijati & Cross, 1977 cause lymphatic diseases in humans in the tropics, while B. pahangi (Buckley & Edeson, 1956) infects carnivores and causes zoonotic diseases in humans in Malaysia. Wuchereria bancrofti, W. kalimantani Palmieri, Pulnomo, Dennis & Marwoto, 1980 and six out of ten Brugia spp. have been described from Australia, Southeast Asia, Sri Lanka and India. However, the origin and evolution of the species in the Wuchereria-Brugia clade remain unclear. While investigating the diversity of filarial parasites in Malaysia, we discovered an undescribed species in the common treeshrew Tupaia glis Diard & Duvaucel (Mammalia: Scandentia).

    METHODS: We examined 81 common treeshrews from 14 areas in nine states and the Federal Territory of Peninsular Malaysia for filarial parasites. Once any filariae that were found had been isolated, we examined their morphological characteristics and determined the partial sequences of their mitochondrial cytochrome c oxidase subunit 1 (cox1) and 12S rRNA genes. Polymerase chain reaction (PCR) products of the internal transcribed spacer 1 (ITS1) region were then cloned into the pGEM-T vector, and the recombinant plasmids were used as templates for sequencing.

    RESULTS: Malayfilaria sofiani Uni, Mat Udin & Takaoka, n. g., n. sp. is described based on the morphological characteristics of adults and microfilariae found in common treeshrews from Jeram Pasu, Kelantan, Malaysia. The Kimura 2-parameter distance between the cox1 gene sequences of the new species and W. bancrofti was 11.8%. Based on the three gene sequences, the new species forms a monophyletic clade with W. bancrofti and Brugia spp. The adult parasites were found in tissues surrounding the lymph nodes of the neck of common treeshrews.

    CONCLUSIONS: The newly described species appears most closely related to Wuchereria spp. and Brugia spp., but differs from these in several morphological characteristics. Molecular analyses based on the cox1 and 12S rRNA genes and the ITS1 region indicated that this species differs from both W. bancrofti and Brugia spp. at the genus level. We thus propose a new genus, Malayfilaria, along with the new species M. sofiani.

    Matched MeSH terms: Brugia/anatomy & histology; Brugia/genetics
  4. Mat Udin AS, Uni S, Zainuri NA, Abdullah Halim MR, Belabut DA
    Trop Biomed, 2020 Dec 01;37(4):1152-1157.
    PMID: 33612768 DOI: 10.47665/tb.37.4.1152
    Some filarial nematodes, such as Wuchereria bancrofti, Brugia malayi, and Brugia timori, cause lymphatic diseases in humans in the tropics, whereas other filarial parasites from wild animals cause zoonotic diseases in humans worldwide. To elucidate the prevalence and diversity of filarial parasites in Malaysia, we investigated the filarial parasites from wild animals in Gemas, Negeri Sembilan. To find adult filarial parasites, we dissected 26 animals, which included five frogs, one skink, one snake, two birds, six common treeshrews, and 11 rats. Then, we examined microfilariae in the blood smears and skin snips obtained from each animal. We found two types of microfilariae in the blood smears of common treeshrews: one was very similar to Malayfilaria sofiani and the other closely resembled Brugia tupaiae. These findings indicate an additional distribution of these filarial parasites in Gemas.
    Matched MeSH terms: Brugia/anatomy & histology*; Brugia/isolation & purification
  5. Underwood AP, Supali T, Wu Y, Bianco AE
    Mol Biochem Parasitol, 2000 Mar 05;106(2):299-302.
    PMID: 10699259
    Matched MeSH terms: Brugia malayi/genetics*; Brugia malayi/isolation & purification
  6. Underwood AP, Bianco AE
    Mol Biochem Parasitol, 1999 Mar 15;99(1):1-10.
    PMID: 10215019
    Random amplification of polymorphic DNA (RAPD) was used to analyse genomic DNA from virgin females and males of Brugia malayi, with a view to identifying sex-specific differences predicted by an XX/XY system of chromosomal sex determination. A product of 2338 bp, amplified with the arbitrary primer 5' GTTGCGATCC 3', was obtained exclusively from males. Primers based on the sequence of this product amplified a DNA fragment of the expected size from each of two independent isolates of B. malayi (from Malaysia and Indonesia) by PCR. No reaction product was obtained from the closely related species Brugia pahangi. In a genetic cross between B. malayi males and B. pahangi females, F1 hybrid microfilariae were PCR-positive, indicating that the locus is paternally-inherited. Southern blotting demonstrated that the target sequence resides in the high molecular weight fraction of genomic DNA, confirming that it is of chromosomal, rather than mitochondrial, origin. Sequencing of the locus revealed significant similarity with members of a family of reverse transcriptase-like genes in Caenorhabditis elegans. In-frame stops indicate that the gene is non-functional, but multiple bands of hybridisation in Southern blots suggest that the RT sequence may be the relic of a transposable element. Multiple repeats of the dinucleotide AT occurred in another region of the sequence. These varied in number between the two isolates of B. malayi in the manner of a microsatellite, surprisingly the first to be described from the B. malayi genome. Because of its association with the Y chromosome, we have given the locus the acronym TOY (Tag On Y). Identification of this chromosome-specific marker confirms the XX/XY heterogametic karyotype in B. malayi and opens the way to elucidation of the role of Y in sex determination.
    Matched MeSH terms: Brugia malayi/genetics*; Brugia malayi/physiology
  7. Chang MS, Ho BC, Chan KL
    PMID: 1683011
    Successful colonization of Mansonia dives, the principal vector of subperiodic Brugia malayi was established in a field insectary. Mean egg clusters laid on Eichhornia crassipes, Pistia stratiotes, Homalomena cordata and polystyrofoam strips were 12.0, 10.4, 9.5 and 13.7 respectively. However, the mean number of first instar larvae hatched from each egg cluster laid by females on the three plant substrates (range 51.1 to 58.6) was higher than that laid on the polystyrofoam strips (41.8). There were no significant differences in the success pupation and adult emergence rates among the three host plants used as attachment substrates. Adult emergence occurred at a mean of 10.8 days. The first adult emergence was observed at the 25th day after hatching and continued till the 50th day. The 50% mortality rates for the adults were estimated as 8 days for the males and 14 days for the females. The mean gonotrophic cycle ranged from 3.8 to 4.3 days with a mean of 4.04 days. 63.6% of Ma. dives females oviposited in a medium of rat dung and water. The mean incubation period of eggs ranged from 5.2 to 6.5 days with a mean of 5.7 days. The biology of Ma. dives and Ma. bonneae is briefly compared.
    Matched MeSH terms: Brugia
  8. Chang MS, Ho BC, Chan KL
    Trop. Med. Parasitol., 1991 Jun;42(2):95-102.
    PMID: 1680246
    A control programme against subperiodic brugian filariasis was implemented in three villages, (Kg. Ampungan, Kg. Sebangkoi and Kg. Sebamban) in Sarawak, Malaysia. In Kampong Ampungan, the mass administration of diethylcarbamazine (DEC-citrate) combined with residual house spraying of pirimiphos-methyl reduced microfilarial rate to 8% of the pre-treatment level and microfilarial density (MfD50) to 44% of the pre-treatment level over a period of four years. In Kampong Sebangkoi and Kampong Sebamban, where only mass DEC therapy was applied, the microfilarial rate and MfD50 declined distinctly in the second blood survey but increased gradually in two subsequent follow-up blood surveys. In Kg, Ampungan, we observed a significant reduction of infective biting rate (88.3%), infection rate (62.5%) and transmission potential (88.1%) of Mansonia bonneae at the fourth spray round. The corresponding reduction rates in Kg. Sebangkoi and Kg. Sebamban were 35.3%, 26.7%, 42.2% and 24%, 30.8% and 15.4% respectively. The biting density of the vector was reduced by 79.8% indoors and 31.8% outdoors at the sprayed village, while only a slight decrease in densities (17.9% indoors and 12.4% outdoors) was observed at the unsprayed village. Bioassay tests revealed that pirimiphos-methyl had a substantial fumigant effect on the vector. The integrated control measure in controlling subperiodic brugian filariasis is discussed.
    Matched MeSH terms: Brugia/drug effects; Brugia/isolation & purification*
  9. Mak JW, Cheong WH, Yen PK, Lim PK, Chan WC
    Acta Trop, 1982 Sep;39(3):237-45.
    PMID: 6128892
    The dynamics of the transmission of subperiodic Brugia malayi in a typical endemic area in Malaysia was studied over a period of 4 years. Mass chemotherapeutic control with diethylcarbamazine citrate was found to be inefficient, new cases being detected even after the fifth treatment cycle of 6 mg/kg X 6 days per cycle. This is in marked contrast to the situation in periodic b. malayi areas where mass treatment efficiently controlled the infection. The disparity in results in these two areas is attributed to zoonotic transmission of subperiodic B. malayi from non-human primates where a mean infection rate of 76.3% was found.
    Matched MeSH terms: Brugia
  10. Chang MS
    Ann Trop Med Parasitol, 2002 Dec;96 Suppl 2:S71-6.
    PMID: 12625920
    An estimated 13 million people in the Oriental Region have brugian filariasis. The filarial parasites that cause this disease exist in periodic and sub-periodic forms and are transmitted by four genera of mosquito: Anopheles, Mansonia and, less frequently, Coquillettidia and Ochlerotatus. In most endemic countries, control of the disease has been entirely based on chemotherapy, although house-spraying and use of insecticide-treated bednets can be quite effective against the vectors of nocturnally periodic Brugia malayi and B. timori. The vector-control methods that may be applied against the Mansonia mosquitoes that transmit the parasites causing sub-periodic brugian filariasis are reviewed here. Most of the conventional methods for controlling the immature, aquatic stages of mosquitoes have proved unsatisfactory against Mansonia. The reason is that, unlike the those of other genera, the larvae and pupae of Mansonia spp. are relatively immobile and obtain air not at the water surface but from the underwater roots, stems and leaves of floating plants to which the larvae and pupae attach. Removal of host plants can be very effective in reducing Mansonia productivity, whereas large-scale use of herbicides is restricted by the potential adverse effects on the ecosystem. Environmental management in water-development projects remains the best option.
    Matched MeSH terms: Brugia*; Brugia malayi
  11. Chiang GL
    PMID: 7973951
    The genus Mansonia is divided into two subgenera, Mansonia and Mansonioides. The subgenus Mansonioides includes the important vectors of lymphatic filariasis caused by Brugia malayi in South and Southeast Asia. Six species of this subgenus are vectors of two types of brugian filariasis, periodic and subperiodic. All six species, viz Mansonia bonneae, Ma. dives, Ma. uniformis, Ma. annulifera, Ma. annulata and Ma. indiana are present in this country. The ecological factors governing the larval and adult biology and their control measures are discussed.
    Matched MeSH terms: Brugia*
  12. Khor BY, Lim TS, Noordin R, Choong YS
    J Mol Graph Model, 2017 09;76:543-550.
    PMID: 28811153 DOI: 10.1016/j.jmgm.2017.07.004
    De novo approach was applied to design single chain fragment variable (scFv) for BmR1, a recombinant antigen from Bm17DIII gene which is the primary antigen used for the detection of anti-BmR1 IgG4 antibodies in the diagnostic of lymphatic filariasis. Three epitopes of the BmR1 was previously predicted form an ab initio derived three-dimensional structure. A collection of energetically favourable conformations was generated via hot-spot-centric approach. This resulted in a set of three different scFv scaffolds used to compute the high shape complementary conformations via dock-and-design approach with the predicted epitopes of BmR1. A total of 4227 scFv designs were generated where 200 scFv designs produced binding energies of less than -20 R.E.U with shape complementarity higher than 0.5. We further selected the design with at least one hydrogen bond and one salt bridge with the epitope, thus resulted in a total of 10, 1 and 19 sFv designs for epitope 1, 2 and 3, respectively. The results thus showed that de novo design can be an alternative approach to yield high affinity in silico scFv designs as a starting point for antibody or specific binder discovery processes.
    Matched MeSH terms: Brugia malayi/immunology
  13. Khor BY, Tye GJ, Lim TS, Noordin R, Choong YS
    Int J Mol Sci, 2014 Jun 19;15(6):11082-99.
    PMID: 24950179 DOI: 10.3390/ijms150611082
    Brugia malayi is a filarial nematode, which causes lymphatic filariasis in humans. In 1995, the disease has been identified by the World Health Organization (WHO) as one of the second leading causes of permanent and long-term disability and thus it is targeted for elimination by year 2020. Therefore, accurate filariasis diagnosis is important for management and elimination programs. A recombinant antigen (BmR1) from the Bm17DIII gene product was used for antibody-based filariasis diagnosis in "Brugia Rapid". However, the structure and dynamics of BmR1 protein is yet to be elucidated. Here we study the three dimensional structure and dynamics of BmR1 protein using comparative modeling, threading and ab initio protein structure prediction. The best predicted structure obtained via an ab initio method (Rosetta) was further refined and minimized. A total of 5 ns molecular dynamics simulation were performed to investigate the packing of the protein. Here we also identified three epitopes as potential antibody binding sites from the molecular dynamics average structure. The structure and epitopes obtained from this study can be used to design a binder specific against BmR1, thus aiding future development of antigen-based filariasis diagnostics to complement the current diagnostics.
    Matched MeSH terms: Brugia malayi/metabolism*
  14. Makhsin SR, Razak KA, Noordin R, Zakaria ND, Chun TS
    Nanotechnology, 2012 Dec 14;23(49):495719.
    PMID: 23164811 DOI: 10.1088/0957-4484/23/49/495719
    This study describes the properties of colloidal gold nanoparticles (AuNPs) with sizes of 20, 30 and 40 nm, which were synthesized using citrate reduction or seeding-growth methods. Likewise, the conjugation of these AuNPs to mouse anti-human IgG(4) (MαHIgG(4)) was evaluated for an immunochromatographic (ICG) strip test to detect brugian filariasis. The morphology of the AuNPs was studied based on the degree of ellipticity (G) of the transmission electron microscopy images. The AuNPs produced using the seeding-growth method showed lower ellipticity (G ≤ 1.11) as compared with the AuNPs synthesized using the citrate reduction method (G ≤ 1.18). Zetasizer analysis showed that the AuNPs that were synthesized using the seeding-growth method were almost monodispersed with a lower polydispersity index (PDI; PDI≤0.079), as compared with the AuNPs synthesized using the citrate reduction method (PDI≤0.177). UV-visible spectroscopic analysis showed a red-shift of the absorbance spectra after the reaction with MαHIgG(4), which indicated that the AuNPs were successfully conjugated. The optimum concentration of the BmR1 recombinant antigen that was immobilized on the surface of the ICG strip on the test line was 1.0 mg ml(-1). When used with the ICG test strip assay and brugian filariasis serum samples, the conjugated AuNPs-MαHIgG(4) synthesized using the seeding-growth method had faster detection times, as compared with the AuNPs synthesized using the citrate reduction method. The 30 nm AuNPs-MαHIgG(4), with an optical density of 4 from the seeding-growth method, demonstrated the best performance for labelling ICG strips because it displayed the best sensitivity and the highest specificity when tested with serum samples from brugian filariasis patients and controls.
    Matched MeSH terms: Brugia/isolation & purification*
  15. Mattick J, Libro S, Bromley R, Chaicumpa W, Chung M, Cook D, et al.
    PLoS Negl Trop Dis, 2021 Oct;15(10):e0009838.
    PMID: 34705823 DOI: 10.1371/journal.pntd.0009838
    The sequence diversity of natural and laboratory populations of Brugia pahangi and Brugia malayi was assessed with Illumina resequencing followed by mapping in order to identify single nucleotide variants and insertions/deletions. In natural and laboratory Brugia populations, there is a lack of sequence diversity on chromosome X relative to the autosomes (πX/πA = 0.2), which is lower than the expected (πX/πA = 0.75). A reduction in diversity is also observed in other filarial nematodes with neo-X chromosome fusions in the genera Onchocerca and Wuchereria, but not those without neo-X chromosome fusions in the genera Loa and Dirofilaria. In the species with neo-X chromosome fusions, chromosome X is abnormally large, containing a third of the genetic material such that a sizable portion of the genome is lacking sequence diversity. Such profound differences in genetic diversity can be consequential, having been associated with drug resistance and adaptability, with the potential to affect filarial eradication.
    Matched MeSH terms: Brugia/classification; Brugia/genetics*
  16. Edeson JFB
    Bull World Health Organ, 1962;27(4-5):529-41.
    PMID: 20604131
    The author reviews the distribution, epidemiology, and treatment of filarial infection due to Brugia malayi, with special reference to Malaya. B. malayi infection in man is confined to the Far East between longitudes 75 degrees E and 140 degrees E and is essentially rural. The chief vectors are Mansonia spp., Anopheles hyrcanus group, A. barbirostris group, and Aëdes togoi. The epidemiological picture is complicated by the fact that B. malayi and other closely related species have now been found in several species of animals. The existence of an animal reservoir of infection might have important implications for filariasis control. As to the treatment of B. malayi infection, diethylcarbamazine has been found to reduce the microfilaria count and to kill the adult worms; the severe febrile reactions of microfilaria carriers to the initial doses of this drug may be reduced by administration of the steroid prednisolone.
    Matched MeSH terms: Brugia malayi
  17. Supali T, Djuardi Y, Bradley M, Noordin R, Rückert P, Fischer PU
    PLoS Negl Trop Dis, 2013;7(12):e2586.
    PMID: 24349595 DOI: 10.1371/journal.pntd.0002586
    The lymphatic filarial parasite Brugia timori occurs only in eastern Indonesia where it causes high morbidity. The absence of an animal reservoir, the inefficient transmission by Anopheles mosquitoes and the high sensitivity to DEC/albendazole treatment make this species a prime candidate for elimination by mass drug administration (MDA).
    Matched MeSH terms: Brugia/isolation & purification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links