Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Zhang S, Zhang R, Yin X, Lu Y, Cheng H, Pan Y, et al.
    Reprod Sci, 2023 Nov;30(11):3325-3338.
    PMID: 37308799 DOI: 10.1007/s43032-023-01282-0
    Endometrial injury is one of the leading causes of female infertility and is caused by intrauterine surgery, endometrial infection, repeated abortion, or genital tuberculosis. Currently, there is little effective treatment to restore the fertility of patients with severe intrauterine adhesions and thin endometrium. Recent studies have confirmed the promising therapeutic effects of mesenchymal stem cell transplantation on various diseases with definite tissue injury. The aim of this study is to investigate the improvements of menstrual blood-derived endometrial stem cells (MenSCs) transplantation on functional restoration in the endometrium of mouse model. Therefore, ethanol-induced endometrial injury mouse models were randomly divided into two groups: the PBS-treated group, and the MenSCs-treated group. As expected, the endometrial thickness and gland number in the endometrium of MenSCs-treated mice were significantly improved compared to those of PBS-treated mice (P cells, which is likely contributed by activating the PI3K/Akt signaling pathway. Further tests also confirmed the chemotaxis of GFP-labeled MenSCs towards the injured uterus. Consequently, MenSCs treatment significantly improved the pregnant mice and the number of embryos in pregnant mice. This study confirmed the superior improvements of MenSCs transplantation on the injured endometrium and uncovered the potential therapeutic mechanism, which provides a promising alternative for patients with serious endometrial injury.
    Matched MeSH terms: Cell Proliferation/physiology
  2. Arshad M, Abdul Hamid N, Chan MC, Ismail F, Tan GC, Pezzella F, et al.
    Cells, 2021 08 24;10(9).
    PMID: 34571823 DOI: 10.3390/cells10092176
    Cancer increases the global disease burden substantially, but it remains a challenge to manage it. The search for novel biomarkers is essential for risk assessment, diagnosis, prognosis, prediction of treatment response, and cancer monitoring. This paper examined NEDD8 ultimate buster-1 (NUB1) and F-adjacent transcript 10 (FAT10) proteins as novel biomarkers in cancer. This literature review is based on the search of the electronic database, PubMed. NUB1 is an interferon-inducible protein that mediates apoptotic and anti-proliferative actions in cancer, while FAT10 is a ubiquitin-like modifier that promotes cancer. The upregulated expression of both NUB1 and FAT10 has been observed in various cancers. NUB1 protein binds to FAT10 non-covalently to promote FAT10 degradation. An overexpressed FAT10 stimulates nuclear factor-kappa β, activates the inflammatory pathways, and induces the proliferation of cancer. The FAT10 protein interacts with the mitotic arrest deficient 2 protein, causing chromosomal instability and breast tumourigenesis. FAT10 binds to the proliferating cell nuclear antigen protein and inhibits the DNA damage repair response. In addition, FAT10 involves epithelial-mesenchymal transition, invasion, apoptosis, and multiplication in hepatocellular carcinoma. Our knowledge about them is still limited. There is a need to further develop NUB1 and FAT10 as novel biomarkers.
    Matched MeSH terms: Cell Proliferation/physiology
  3. Mohamed SIA, Jantan I, Nafiah MA, Seyed MA, Chan KM
    Curr Pharm Biotechnol, 2021;22(2):262-273.
    PMID: 32532192 DOI: 10.2174/1389201021666200612173029
    BACKGROUND: The anticancer effects of Phyllanthus amarus extract on various cancer cells have been investigated, however, the effects of its major constituents on HCT116 human colorectal cancer cells have not been reported.

    OBJECTIVE: In the present study, we investigated the cytotoxic effect of 80% ethanol extract of P. amarus and its marker constituents (phyllanthin, hypophyllanthin, gallic acid, niranthin, greraniin, phyltetralin, isolintetralin, corilagin and ellagic acid) on HCT116 and their underlying mechanisms of action.

    METHODS: Their antiproliferative and apoptotic effects on HCT 116 were performed using MTT assay and flow cytometric analysis, respectively, while caspases 3/7, 8 and 9 activities were examined using the colorimetric method. The expression of cleaved poly ADP ribose polymerase enzyme (PARP) and cytochrome c proteins was investigated by the immune-blot technique.

    RESULTS AND DISCUSSION: HPLC and LC-MS/MS analyses demonstrated that the extract contained mainly lignans and polyphenols. The plant samples markedly suppressed the growth and expansion of HCT116 cells in a concentration- and time-dependent manner with no toxicity against normal human fibroblast CCD18 Co. P. amarus extract, phyllanthin and gallic acid induced mode of cell death primarily through apoptosis as confirmed by the exteriorization of phosphatidylserine. Caspases 3/7, 8, and 9 activities increased in a concentration-dependent manner following 24h treatment. The expressions of cleaved PARP (Asp 214) and cytochrome c were markedly upregulated.

    CONCLUSION: P. amarus extract, phyllanthin and gallic acid exhibited an apoptotic effect on HCT116 cells through the caspases-dependent pathway.

    Matched MeSH terms: Cell Proliferation/physiology
  4. Tee YN, Kumar PV, Maki MAA, Elumalai M, Rahman SAKMEH, Cheah SC
    Curr Pharm Biotechnol, 2021;22(7):969-982.
    PMID: 33342408 DOI: 10.2174/1389201021666201218124450
    BACKGROUND: Recombinant Keratinocyte Growth Factor (rHuKGF) is a therapeutic protein used widely in oral mucositis after chemotherapy in various cancers, stimulating lung morphogenesis and gastrointestinal tract cell proliferation. In this research study, chitosan-rHuKGF polymeric complex was implemented to improve the stability of rHuKGF and used as rejuvenation therapy for the treatment of oral mucositis in cancer patients.

    OBJECTIVE: Complexation of rHuKGF with mucoadhesive low molecular weight chitosan to protect rHuKGF from proteolysis and investigate the effect of chitosan-rHuKGF complex on the proliferation rate of FHs 74 Int cells.

    METHODS: The interaction between chitosan and rHuKGF was studied by molecular docking. Malvern ZetaSizer Nano Zs and Fourier-Transform Infrared spectroscopy (FTIR) tests were carried out to characterize the chitosan-rHuKGF complex. In addition, SDS-PAGE was performed to investigate the interaction between chitosan-rHuKGF complex and pepsin. The effect of chitosan-rHuKGF complex on the proliferation rate of FHs 74 Int cells was studied by MTT assay.

    RESULTS: Chitosan-rHuKGF complex was formed through the hydrogen bonding proven by the docking studies. A stable chitosan-rHuKGF complex was formed at pH 4.5 and was protected from proteolysis and assessed by SDS PAGE. According to the MTT assay results, chitosan-rHuKGF complex increased the cell proliferation rate of FHs 74 Int cells.

    CONCLUSION: The developed complex improved the stability and the biological function of rHuKGF.

    Matched MeSH terms: Cell Proliferation/physiology
  5. Umar MI, Hassan W, Murtaza G, Buabeid M, Arafa E, Irfan HM, et al.
    Pathol Oncol Res, 2021;27:1609828.
    PMID: 34588926 DOI: 10.3389/pore.2021.1609828
    A hormonal imbalance may disrupt the rigorously monitored cellular microenvironment by hampering the natural homeostatic mechanisms. The most common example of such hormonal glitch could be seen in obesity where the uprise in adipokine levels is in virtue of the expanding bulk of adipose tissue. Such aberrant endocrine signaling disrupts the regulation of cellular fate, rendering the cells to live in a tumor supportive microenvironment. Previously, it was believed that the adipokines support cancer proliferation and metastasis with no direct involvement in neoplastic transformations and tumorigenesis. However, the recent studies have reported discrete mechanisms that establish the direct involvement of adipokine signaling in tumorigenesis. Moreover, the individual adipokine profile of the patients has never been considered in the prognosis and staging of the disease. Hence, the present manuscript has focused on the reported extensive mechanisms that culminate the basis of poor prognosis and diminished survival rate in obese cancer patients.
    Matched MeSH terms: Cell Proliferation/physiology*
  6. Nuriliani A, Nakahata Y, Ahmed R, Khaidizar FD, Matsui T, Bessho Y
    Genes Cells, 2020 Aug;25(8):593-602.
    PMID: 32533606 DOI: 10.1111/gtc.12794
    A main feature of aged organisms is the accumulation of senescent cells. Accumulated senescent cells, especially stress-induced premature senescent cells, in aged organisms lead to the decline of the regenerative potential and function of tissues. We recently reported that the over-expression of NAMPT, which is the rate-limiting enzyme in mammalian NAD+ salvage pathway, delays replicative senescence in vitro. However, whether Nampt-overexpressing cells are tolerant of stress-induced premature senescence remains unknown. Here, we show that primary mouse embryonic fibroblasts derived from Nampt-overexpressing transgenic mice (Nampt Tg-MEF cells) possess resistance against stress-induced premature senescence in vitro. We found that higher oxidative or endoplasmic reticulum (ER) stress is required to induce premature senescence in Nampt Tg-MEF cells compared to wild-type cells. Moreover, we found that Nampt Tg-MEF cells show acute expression of unfolded protein response (UPR)-related genes, which in turn would have helped to restore proteostasis and avoid cellular senescence. Our results demonstrate that NAMPT/NAD+ axis functions to protect cells not only from replicative senescence, but also from stress-induced premature senescence in vitro. We anticipate that in vivo activation of NAMPT activity or increment of NAD+ would protect tissues from the accumulation of premature senescent cells, thereby maintaining healthy aging.
    Matched MeSH terms: Cell Proliferation/physiology
  7. Sarmadi VH, Ahmadloo S, Boroojerdi MH, John CM, Al-Graitte SJR, Lawal H, et al.
    Cell Transplant, 2020 2 7;29:963689719885077.
    PMID: 32024378 DOI: 10.1177/0963689719885077
    Treatment of leukemia has become much difficult because of resistance to the existing anticancer therapies. This has thus expedited the search for alternativ therapies, and one of these is the exploitation of mesenchymal stem cells (MSCs) towards control of tumor cells. The present study investigated the effect of human umbilical cord-derived MSCs (UC-MSCs) on the proliferation of leukemic cells and gauged the transcriptomic modulation and the signaling pathways potentially affected by UC-MSCs. The inhibition of growth of leukemic tumor cell lines was assessed by proliferation assays, apoptosis and cell cycle analysis. BV173 and HL-60 cells were further analyzed using microarray gene expression profiling. The microarray results were validated by RT-qPCR and western blot assay for the corresponding expression of genes and proteins. The UC-MSCs attenuated leukemic cell viability and proliferation in a dose-dependent manner without inducing apoptosis. Cell cycle analysis revealed that the growth of tumor cells was arrested at the G0/G1 phase. The microarray results identified that HL-60 and BV173 share 35 differentially expressed genes (DEGs) (same expression direction) in the presence of UC-MSCs. In silico analysis of these selected DEGs indicated a significant influence in the cell cycle and cell cycle-related biological processes and signaling pathways. Among these, the expression of DBF4, MDM2, CCNE2, CDK6, CDKN1A, and CDKN2A was implicated in six different signaling pathways that play a pivotal role in the anti-tumorigenic activity exerted by UC-MSCs. The UC-MSCs perturbate the cell cycle process of leukemic cells via dysregulation of tumor suppressor and oncogene expression.
    Matched MeSH terms: Cell Proliferation/physiology
  8. Barzegar Behrooz A, Syahir A, Ahmad S
    J Drug Target, 2019 03;27(3):257-269.
    PMID: 29911902 DOI: 10.1080/1061186X.2018.1479756
    CD133 (prominin-1), a pentaspan membrane glycoprotein, is one of the most well-characterized biomarkers used for the isolation of cancer stem cells (CSCs). The presence of CSCs is one of the main causes of tumour reversal and resilience. Accumulating evidence has shown that CD133 might be responsible for CSCs tumourigenesis, metastasis and chemoresistance. It is now understood that CD133 interacts with the Wnt/β-catenin and PI3K-Akt signalling pathways. Moreover, CD133 can upregulate the expression of the FLICE-like inhibitory protein (FLIP) in CD133-positive cells, inhibiting apoptosis. In addition, CD133 can increase angiogenesis by activating the Wnt signalling pathway and increasing the expression of vascular endothelial growth factor-A (VEGF-A) and interleukin-8. Therefore, CD133 could be considered to be an 'Achilles' heel' for CSCs, because by inhibiting this protein, the signalling pathways that are involved in cell proliferation will also be inhibited. By understanding the molecular biology of CD133, we can not only isolate stem cells but can also utilise it as a therapeutic strategy. In this review, we summarise new insights into the fundamental cell biology of CD133 and discuss the involvement of CD133 in metastasis, metabolism, tumourigenesis, drug-resistance, apoptosis and autophagy.
    Matched MeSH terms: Cell Proliferation/physiology
  9. Langford-Smith AWW, Hasan A, Weston R, Edwards N, Jones AM, Boulton AJM, et al.
    Sci Rep, 2019 02 19;9(1):2309.
    PMID: 30783159 DOI: 10.1038/s41598-019-38921-z
    Endothelial colony forming progenitor cell (ECFC) function is compromised in diabetes, leading to poor vascular endothelial repair, which contributes to impaired diabetic foot ulcer healing. We have generated novel glycomimetic drugs with protective effects against endothelial dysfunction. We investigated the effect of glycomimetic C3 on the functional capacity of diabetic ECFCs. ECFCs were isolated from healthy controls and patients with diabetes with neuroischaemic (NI) or neuropathic (NP) foot ulcers. Functionally, diabetic ECFCs demonstrated delayed colony formation (p cells (p cells (p cells but not NP cells, using a novel glycomimetic agent, which may be advantageous for therapeutic cell transplantation or as a localised treatment for NI but not NP patients.
    Matched MeSH terms: Cell Proliferation/physiology
  10. Malami I, Abdul AB
    Biomed Pharmacother, 2019 Jan;109:1506-1510.
    PMID: 30551402 DOI: 10.1016/j.biopha.2018.10.200
    Apoptosis is a series of molecular signalling regulating normal cellular growth and development. Cells resistance to apoptosis, however, leads to uncontrolled proliferation. Research involving cancer cell death is one of the most important targeted areas in the discovery of novel anticancer therapy. There are several biochemical pathways that are liked towards cancer cell death of which, uridine-cytidine kinase 2 (UCK2) was recently linked to cell apoptosis induction. UCK2 is responsible for the phosphorylation of uridine and cytidine to their corresponding monophosphate in a salvage pathway of pyrimidine nucleotides biosynthesis. Cytotoxic ribonucleoside analogues that target UCK2 enzyme activity are currently being investigated in clinical trials useful for cancer treatment. Whilst findings have clearly shown that these antimetabolites inhibit cancer development in clinical settings, they have yet to establish linking cytotoxic nucleoside analogues to cancer cell death. In this present review, we propose the probable molecular crosstalk involving UCK2 protein and cancer cell death through cell cycle arrest and triggering of apoptosis involving proteins, MDM2 and the subsequent activation of p53.
    Matched MeSH terms: Cell Proliferation/physiology
  11. Tai L, Teoh HK, Cheong SK
    Malays J Pathol, 2018 Dec;40(3):325-329.
    PMID: 30580364
    INTRODUCTION: Induced pluripotent stem cells (iPSC) that exhibit embryonic stem cell-like properties with unlimited self-renewal and multilineage differentiation properties, are a potential cell source in regenerative medicine and cell-based therapy. Although retroviral and lentiviral transduction methods to generate iPSC are well established, the risk of mutagenesis limits the use of these products for therapeutic applications.

    MATERIALS AND METHODS: In this study, reprogramming of human dermal fibroblasts (NHDF) into iPSC was carried out using non-integrative Sendai virus for transduction. The iPSC clones were characterised based on the morphological changes, gene expression of pluripotency markers, and spontaneous and directed differentiation abilities into cells of different germ layers.

    RESULTS: On day 18-25 post-transduction, colonies with embryonic stem cell-like morphology were obtained. The iPSC generated were free of Sendai genome and transgene after passage 10, as confirmed by RT-PCR. NHDF-derived iPSC expressed multiple pluripotency markers in qRT-PCR and immunofluorescence staining. When cultured in suspension for 8 days, iPSC successfully formed embryoid body-like spheres. NHDF-derived iPSC also demonstrated the ability to undergo directed differentiation into ectoderm and endoderm.

    CONCLUSION: NHDF were successfully reprogrammed into iPSC using non-integrating Sendai virus for transduction.

    Matched MeSH terms: Cell Proliferation/physiology
  12. Baharuddin AA, Roosli RAJ, Zakaria ZA, Md Tohid SF
    Pharm Biol, 2018 Dec;56(1):422-432.
    PMID: 30301390 DOI: 10.1080/13880209.2018.1495748
    CONTEXT: Dicranopteris linearis (Burm.f.) Underw. (Gleicheniaceae) has been scientifically proven to exert various pharmacological activities. Nevertheless, its anti-proliferative potential has not been extensively investigated.

    OBJECTIVE: To investigate the anti-proliferative potential of D. linearis leaves and determine possible mechanistic pathways.

    MATERIALS AND METHODS: MTT assay was used to determine the cytotoxic effects of D. linearis methanol (MEDL) and petroleum ether (PEEDL) extracts at concentrations of 100, 50, 25, 12.5, 6.25 and 3.125 µg/mL against a panel of cancer cell lines (breast [MCF-7 and MDA-MB-231], cervical [HeLa], colon [HT-29], hepatocellular [HepG2] and lung [A549]), as compared to negative (untreated) and positive [5-fluorouracil (5-FU)-treated] control groups. Mouse fibroblast cells (3T3) were used as normal cells. The mode of cell death was examined using morphological analysis via acridine orange (AO) and propidium iodide (PI) double staining. Cell cycle arrest was determined using flow cytometer, followed by annexin V-PI apoptosis detection kit.

    RESULTS: MEDL demonstrated the most significant growth inhibition against MDA-MB-231 cells (IC50 22.4 µg/mL). PEEDL showed no cytotoxic effect. Induction of apoptosis by MEDL was evidenced via morphological analysis and acridine orange propidium iodide staining. MEDL could induce S phase cell cycle arrest after 72 h of incubation. Early apoptosis induction in MDA-MB-231 cells was confirmed by annexin V-FITC and PI staining. Significant increase in apoptotic cells were detected after 24 h of treatment with 15.07% cells underwent apoptosis, and the amount escalated to 18.24% with prolonged 48 h incubation.

    CONCLUSIONS: MEDL has potential as a potent cytotoxic agent against MDA-MB-231 adenocarcinoma.

    Matched MeSH terms: Cell Proliferation/physiology
  13. Lim YC, Quek H, Offenhäuser C, Fazry S, Boyd A, Lavin M, et al.
    J Neurooncol, 2018 Jul;138(3):509-518.
    PMID: 29564746 DOI: 10.1007/s11060-018-2838-0
    Glioblastoma (GBM) is a highly fatal disease with a 5 year survival rate of less than 22%. One of the most effective treatment regimens to date is the use of radiotherapy which induces lethal DNA double-strand breaks to prevent tumour growth. However, recurrence occurs in the majority of patients and is in-part a result of robust radioresistance mechanisms. In this study, we demonstrate that the multifunctional cytokine, interleukin-6 (IL-6), confers a growth advantage in GBM cells but does not have the same effect on normal neural progenitor cells. Further analysis showed IL-6 can promote radioresistance in GBM cells when exposed to ionising radiation. Ablation of the Ataxia-telangiectasia mutated serine/threonine kinase that is recruited and activated by DNA double-strand breaks reverses the effect of radioresistance and re-sensitised GBM to DNA damage thus leading to increase cell death. Our finding suggests targeting the signaling cascade of DNA damage response is a potential therapeutic approach to circumvent IL-6 from promoting radioresistance in GBM.
    Matched MeSH terms: Cell Proliferation/physiology
  14. Gounder SS, Abdullah BJJ, Radzuanb NEIBM, Zain FDBM, Sait NBM, Chua C, et al.
    Anal Cell Pathol (Amst), 2018;2018:7871814.
    PMID: 30175033 DOI: 10.1155/2018/7871814
    Age-associated changes in natural killer (NK) cell population, phenotype, and functions are directly attributed to the risk of several diseases and infections. It is predicted to be the major cause of the increase in mortality. Based on the surface density of CD56, NK cells are subdivided into two types, such as CD56bright and CD56dim cells, which represent cytokine production and cytotoxicity. In our study, we have examined the age-associated changes in the NK cell population and their subsets at different age groups of males and females (at a range from 41 to 80 years). We found that the total lymphocyte count significantly dropped upon aging in both genders. Although, the level of total immune cells also dropped on aging, and surprisingly the total NK cell population was remarkably increased with the majority of NK cells being CD56dim. Subsequently, we evaluated the proliferation potential of NK cells and our results showed that the NK cell proliferation ability declines with age. Overall, our findings prove that there is an increase in the circulating NK cell population upon aging. However, the proliferation rate upon aging declines when compared to the young age group (<41 yrs).
    Matched MeSH terms: Cell Proliferation/physiology*
  15. Law JX, Chowdhury SR, Aminuddin BS, Ruszymah BHI
    Cell Tissue Bank, 2017 Dec;18(4):585-595.
    PMID: 28748415 DOI: 10.1007/s10561-017-9645-2
    Fibrin has excellent biocompatibility and biological properties to support tissue regeneration and promote wound healing. However, the role of diluted fibrin in wound healing has yet to be elucidated as it is commonly used in high concentration. This study was aimed to examine the effects of diluted plasma-derived fibrin (PDF) on keratinocyte and fibroblast wound healing in term of cell proliferation, migration, extracellular matrix (ECM) production and soluble factor secretion. Two PDF concentrations, 10 and 20% (v/v) were tested on keratinocytes and fibroblasts indirectly co-cultured in the transwell system. The control group was cultured with 5% FBS. Results showed that PDF reduced the keratinocyte growth rate and fibroblast migration, and increased the fibroblast ECM gene expression whereby significant differences were found between the 20% PDF group and the 5% FBS group. Similar trend was seen for the 10% PDF group but the differences were not significant. Comparison of the soluble factors between the PDF groups demonstrated that the level of growth-related oncogene alpha, interleukin-8 and epithelial neutrophil-activating peptide-78 were significantly higher in the 10% PDF group, whilst interleukin-1 alpha and granulocyte-macrophage colony stimulating factor were significantly more concentrated in the 20% PDF group. Our results suggested that PDF selectively elevated the expression of collagen type 1 and collagen type 3 in fibroblasts but slowed down the migration in concentration-dependent manner. These novel findings provide new insight into the role of PDF in wound healing and may have important implications for the use of fibrin in skin tissue engineering.
    Matched MeSH terms: Cell Proliferation/physiology
  16. Lau SX, Leong YY, Ng WH, Ng AWP, Ismail IS, Yusoff NM, et al.
    Cell Biol Int, 2017 Jun;41(6):697-704.
    PMID: 28403524 DOI: 10.1002/cbin.10774
    Studies showed that co-transplantation of mesenchymal stem cells (MSCs) and cord blood-derived CD34+hematopoietic stem cells (HSCs) offered greater therapeutic effects but little is known regarding the effects of human Wharton's jelly derived MSCs on HSC expansion and red blood cell (RBC) generation in vitro. This study aimed to investigate the effects of MSCs on HSC expansion and differentiation. HSCs were co-cultured with MSCs or with 10% MSCs-derived conditioned medium, with HSCs cultured under standard medium served as a control. Cell expansion rates, number of mononuclear cell post-expansion and number of enucleated cells post-differentiation were evaluated. HSCs showed superior proliferation in the presence of MSC with mean expansion rate of 3.5 × 108 ± 1.8 × 107after day 7 compared to the conditioned medium and the control group (8.9 × 107 ± 1.1 × 108and 7.0 × 107 ± 3.3 × 106respectively, P cell was greater compared to earlier passages, indicating successful RBC differentiation. Cord blood-derived CD34+HSCs can be greatly expanded by co-culturing with MSCs without affecting the RBC differentiation capability, suggesting the importance of direct MSC-HSCs contact in HSC expansion and RBC differentiation.
    Matched MeSH terms: Cell Proliferation/physiology
  17. Wu YS, Chung I, Wong WF, Masamune A, Sim MS, Looi CY
    Biochim Biophys Acta Gen Subj, 2017 Feb;1861(2):296-306.
    PMID: 27750041 DOI: 10.1016/j.bbagen.2016.10.006
    BACKGROUND: We previously showed that pancreatic stellate cells (PSC) secreted interleukin (IL)-6 and promoted pancreatic ductal adenocarcinoma (PDAC) cell proliferation via nuclear factor erythroid 2 (Nrf2)-mediated metabolic reprogramming. Epithelial-mesenchymal transition (EMT) is a key process for the metastatic cascade. To study the mechanism of PDAC progression to metastasis, we investigated the role of PSC-secreted IL-6 in activating EMT and the involvement of Nrf2 in this process.

    METHODS: Gene expression of IL-6 and IL-6Rα in PSC and PDAC cells was measured with qRT-PCR. The role of PSC-secreted IL-6, JAK/Stat3 signaling, and Nrf2 mediation on EMT-related genes expression was also examined with qRT-PCR. EMT phenotypes were assessed with morphological change, wound healing, migration, and invasion.

    RESULTS: PSC expressed higher mRNA levels of IL-6 but lower IL-6Rα compared to PDAC cells. Neutralizing IL-6 in PSC secretion reduced mesenchymal-like morphology, migration and invasion capacity, and mesenchymal-like gene expression of N-cadherin, vimentin, fibronectin, collagen I, Sip1, Snail, Slug, and Twist2. Inhibition of JAK/Stat3 signaling induced by IL-6 repressed EMT and Nrf2 gene expression. Induction of Nrf2 activity by tert-butylhydroquinone (tBHQ) increased both EMT phenotypes and gene expression (N-cadherin, fibronectin, Twist2, Snail, and Slug) repressed by IL-6 neutralizing antibody. Simultaneous inhibition of Nrf2 expression with siRNA and Stat3 signaling further repressed EMT gene expression, indicating that Stat3/Nrf2 pathway mediates EMT induced by IL-6.

    CONCLUSIONS: IL-6 from PSC promotes EMT in PDAC cells via Stat3/Nrf2 pathway.

    GENERAL SIGNIFICANCE: Targeting Stat3/Nrf2 pathway activated by PSC-secreted IL-6 may provide a novel therapeutic option to improve the prognosis of PDAC.

    Matched MeSH terms: Cell Proliferation/physiology
  18. Lim FT, Ogawa S, Smith AI, Parhar IS
    Zebrafish, 2017 Feb;14(1):10-22.
    PMID: 27797681 DOI: 10.1089/zeb.2016.1319
    The central nervous system (CNS) of the non-mammalian vertebrates has better neuroregenerative capability as compared with the mammalian CNS. Regeneration of habenula was observed 40 days after damage in zebrafish. During the early stage of regeneration, we found a significant increase of apoptotic cells on day-1 post-damage and of proliferative cells on day-3 post-damage. To identify the molecular factor(s) involved in the early stages of neuroregeneration, differentially expressed proteins during sham, 20- and 40-h post-habenula damage were investigated by proteomic approach by using two-dimensional differential gel electrophoresis (2D-DIGE) coupled with Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight (MALDI-ToF) and tandem mass spectrometry. Protein profiles revealed 17 differentially (>1.5-fold) expressed proteins: 10 upregulated, 4 downregulated, 2 proteins were found to be downregulated at the early stage but upregulated at a later stage, and 1 protein was found to be upregulated at 2 different time points. All proteins identified can be summarized under few molecular processes involved in the early stages of neuroregeneration in zebrafish CNS: apoptosis regulation (Wnt inhibitory factor 1 [WIF1]), neuroprotection (metallothionein), cell proliferation (Spred2, ependymin, Lhx1, and Wnts), differentiation (Spred2, Lhx9, and Wnts), and morphogenesis (cytoplasmic actins and draculin). These protein profiling results suggest that drastic molecular changes occur in the neuroregenerative process during this period, which includes cell proliferation, differentiation, and protection.
    Matched MeSH terms: Cell Proliferation/physiology*
  19. Mannan Baig A, Khan NA, Effendi V, Rana Z, Ahmad HR, Abbas F
    Anticancer Drugs, 2017 01;28(1):75-87.
    PMID: 27606721
    Recent reports on acetylcholine muscarinic receptor subtype 3 (CHRM3) have shown its growth-promoting role in prostate cancer. Additional studies report the proliferative effect of the cholinergic agonist carbachol on prostate cancer by its agonistic action on CHRM3. This study shows that the type 1 acetylcholine muscarinic receptor (CHRM1) contributes toward the proliferation and growth of prostate cancer. We used growth and cytotoxic assays, the prostate cancer microarray database and CHRM downstream pathways' homology of CHRM subtypes to uncover multiple signals leading to the growth of prostate cancer. Growth assays showed that pilocarpine stimulates the proliferation of prostate cancer. Moreover, it shows that carbachol exerts an additional agonistic action on nicotinic cholinergic receptor of prostate cancer cells that can be blocked by tubocurarine. With the use of selective CHRM1 antagonists such as pirenzepine and dicyclomine, a considerable inhibition of proliferation of prostate cancer cell lines was observed in dose ranging from 15-60 µg/ml of dicyclomine. The microarray database of prostate cancer shows a dominant expression of CHRM1 in prostate cancer compared with other cholinergic subtypes. The bioinformatics of prostate cancer and CHRM pathways show that the downstream signalling include PIP3-AKT-CaM-mediated growth in LNCaP and PC3 cells. Our study suggests that antagonism of CHRM1 may be a potential therapeutic target against prostate cancer.
    Matched MeSH terms: Cell Proliferation/physiology
  20. Lim FT, Ogawa S, Parhar IS
    Brain Res, 2016 11 01;1650:60-72.
    PMID: 27568467 DOI: 10.1016/j.brainres.2016.08.033
    Injury to neuronal tissues in the central nervous system (CNS) of mammals results in neural degeneration and sometime leads to loss of function, whereas fish retain a remarkable potential for neuro-regeneration throughout life. Thus, understanding the mechanism of neuro-regeneration in fish CNS would be useful to improve the poor neuro-regenerative capability in mammals. In the present study, we characterized a neuro-regenerative process in the brain of a cichlid, tilapia, Oreochromis niloticus. Morphological observations showed that the damaged brain region (habenula) successfully regrew and reinnervated axonal projections by 60 days post-damage. A fluorescent carbocyanine tracer, DiI tracing revealed a recovery of the major neuronal projection from the regenerated habenula to the interpenduncular nucleus by 60 days post-damage. TUNEL assay showed a significant increase of apoptotic cells (~234%, P<0.01) at one day post-damage, while the number of bromodeoxyuridine (BrdU)-positive proliferative cells were significantly increased (~92%, P<0.05) at 7 days post-damage compared with sham-control fish. To demonstrate a potential role of apoptotic activity in the neuro-regeneration, effects of degenerative neural tissue on cell proliferation were examined in vivo. Implantation of detached neural but not non-neural tissues into the cranial cavity significantly (P<0.01) increased the number of BrdU-positive cells nearby the implantation regions at 3 days after the implantation. Furthermore, local injection of the protein extract and cerebrospinal fluid collected from injured fish brain significantly induced cell proliferation in the brain. These results suggest that factor(s) derived from apoptotic neural cells may play a critical role in the neuro-regeneration in teleost brain.
    Matched MeSH terms: Cell Proliferation/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links