Displaying publications 1 - 20 of 143 in total

Abstract:
Sort:
  1. Özbilgin A, Çavuş İ, Yıldırım A, Gündüz C
    Mikrobiyol Bul, 2016 Jul;50(3):484-90.
    PMID: 27525405
    Plasmodium knowlesi is now added to the known four Plasmodium species (P.vivax, P.falciparum, P.malariae, P.ovale) as a cause of malaria in humans because of the recent increasing rate of cases reported from countries of southeastern Asia. P.knowlesi which infects macaque monkeys (Macaca fascicularis and M.nemestrina) is transmitted to humans especially by Anopheles leucosphyrus and An.hackeri mosquitos. First human cases of P.knowlesi malaria have been detected in Malaysia which have reached high numbers in recent years and also have been reported from countries of Southeast Asia such as Thailand, Philippines, Myanmar, Singapore and Vietnam. However the number of cases reported from western countries are rare and limited only within voyagers. This report is the first presentation of an imported case of P.knowlesi malaria in Turkey and aims to draw attention to the point that it could also be detected in future. A 33-year-old male patient from Myanmar who has migrated to Turkey as a refugee, was admitted to a health center with the complaints of fever with a periodicity of 24 hours, headache, fatigue, cough, sore throat, anorexia, myalgia and arthralgia. He was prediagnosed as upper respiratory tract infection, however because of his periodical fever and background in Myanmar, thick and thin blood films were prepared and sent to our laboratory for further examinations. Microscopic examination of the thin blood films revealed erythrocytic stages compatible with P.knowlesi (three large early trophozoites in an erythrocyte, three late trophozoites with compact view, and three late band-form trophozoites). Upon this, both real-time polymerase chain reaction (Rt-PCR) targeting the small subunit ribosomal RNA (SSU-rRNA) genes of Plasmodium genus and DNA sequence analysis targeting P.knowlesi rRNA gene were performed. As a result, the suspected identification of P.knowlesi by microscopy was confirmed by Rt-PCR and DNA sequencing. The patient was treated with chloroquine and primaquine combination and in the follow-up on the seventh day after the treatment, his parasitemia and symptoms had ceased. Although there were some previous reports concerning about imported patients infected with different Plasmodium species in our country, no cases of P.knowlesi have been reported. This first case presented here emphasizes the occurence of P.knowlesi malaria in Turkey hereinafter due to the increasing number of refugees.
    Matched MeSH terms: Chloroquine/therapeutic use
  2. van Hellemond JJ, van Genderen PJ
    Ned Tijdschr Geneeskd, 2010;154:A1353.
    PMID: 20456798
    Matched MeSH terms: Chloroquine/therapeutic use
  3. Pan B, Pei FQ, Ruan CW, Lin RX, Cen YZ, Liu MR, et al.
    PMID: 30141606
    Objective: To diagnose and treat the first imported active case of Plasmodium knowlesi infection in China.

    Methods: The clinical information of the patient was collected. Microscopy of blood smear was conducted after Giemsa staining. Genomic DNA was extracted from blood, and PCR was conducted to amplify rDNA. The PCR products were sequenced and analyzed with BLAST

    Results: The patient returned from a one-week tour in a tropical rain forest in Malaysia. The first disease attack occurred in Guangzhou on Oct. 16, 2014, with fever, shivering and sweating. The patient was initially diagnosed as malaria and hospitalized on Oct. 26, 2014. Microscopic observation revealed typical forms of P. knowlesi in blood smear. The red blood cells became enlarged, with big trophozoites appearing as a ring with dual cores and dark brown malaria pigment. The trophozoites were slightly bigger and thicker than P. falciparum. The schizont had 6-8 merozoites, with obvious brown malaria pigment. PCR resulted in a specific band of 1 099 bp. BLAST analysis showed that the sequence of the PCR product was 99% homologous to P. knowlesi (acession No. AM910985.1, L07560.1 and AY580317.1). The patient was diagnosed as P. knowlesi infection, and was then given an 8-day treatment with chloroquine and primaquine, together with dihydroartemisinin piperaquine phosphate tablet. The patient was discharged after recovery on Oct. 28, 2014.

    Conclusion: According to the clinical symptoms, epidemiological history and laboratory test, the patient has been confirmed as P. knowlesi infection. It may also be the first active case of knowlesi malaria reported in China.

    Matched MeSH terms: Chloroquine
  4. Ang HH, Chan KL, Mak JW
    Chemotherapy, 1997 Mar-Apr;43(2):142-7.
    PMID: 9084924
    Plasmodium falciparum isolates from Malaysia, Africa and Thailand were cultured in vitro following the method of Trager and Jensen and subsequently cloned using the limiting dilution method of Rosario. These clones were presently characterized against three schizonticidal drugs, chloroquine, mefloquine and quinine, using the modified in vitro microtechnique. Results showed that all the clones derived from Gombak A isolate were chloroquine-resistant with average IC50 values ranging at 0.1377-1.0420 microM (0.007-0.058 mefloquine activity), sensitive to mefloquine at 0.0032-0.0103 microM and quinine at 0.0025-0.0428 microM (0.075-3.080 mefloquine activity). Similarly, the TGR clone displayed resistance to chloroquine at 0.1715-0.5875 microM (0.002-0.029 mefloquine activity) but were also sensitive to mefloquine at 0.0008-0.0058 microM and quinine at 0.0055-0.0700 microM (0.055-0.202 mefloquine activity). In contrast, four out of six Gambian clones were sensitive to chloroquine at 0.0047-0.0172 microM (0.122-0.617 mefloquine activity) but all were sensitive to mefloquine at 0.0008-0.0029 and 0.0016-0.0102 microM (0.096-1.813 mefloquine activity). In general, most of the clones displayed susceptibility patterns similar to that of their parent isolates against the three schizonticidal drugs except Gm/B2 and Gm/H5 Gambian clones were chloroquine-resistant at 0.3427 microM (0.006 mefloquine activity) and 0.2260 microM (0.004 mefloquine activity), respectively. Further results indicated that they were pure clones compared to their parent isolates as their schizonticidal drug susceptibilities were statistically different (p < 0.05) except Gm/C6 and TGR/B7 clones against mefloquine (p < 0.05).
    Matched MeSH terms: Chloroquine/pharmacology
  5. Mazhar F, Hadi MA, Kow CS, Marran AMN, Merchant HA, Hasan SS
    Int J Infect Dis, 2020 Dec;101:107-120.
    PMID: 33007453 DOI: 10.1016/j.ijid.2020.09.1470
    OBJECTIVES: We critically evaluated the quality of evidence and quality of harm reporting in clinical trials that evaluated the effectiveness of hydroxychloroquine (HCQ) or chloroquine (CQ) for the treatment of coronavirus disease 2019 (COVID-19).

    STUDY DESIGN AND SETTING: Scientific databases were systematically searched to identify relevant trials of HCQ/CQ for the treatment of COVID-19 published up to 10 September 2020. The Cochrane risk-of-bias tools for randomized trials and non-randomized trials of interventions were used to assess risk of bias in the included studies. A 10-item Consolidated Standards of Reporting Trials (CONSORT) harm extension was used to assess quality of harm reporting in the included trials.

    RESULTS: Sixteen trials, including fourteen randomized trials and two non-randomized trials, met the inclusion criteria. The results from the included trials were conflicting and lacked effect estimates adjusted for baseline disease severity or comorbidities in many cases, and most of the trials recruited a fairly small cohort of patients. None of the clinical trials met the CONSORT criteria in full for reporting harm data in clinical trials. None of the 16 trials had an overall 'low' risk of bias, while four of the trials had a 'high', 'critical', or 'serious' risk of bias. Biases observed in these trials arise from the randomization process, potential deviation from intended interventions, outcome measurements, selective reporting, confounding, participant selection, and/or classification of interventions.

    CONCLUSION: In general, the quality of currently available evidence for the effectiveness of CQ/HCQ in patients with COVID-19 is suboptimal. The importance of a properly designed and reported clinical trial cannot be overemphasized amid the COVID-19 pandemic, and its dismissal could lead to poorer clinical and policy decisions, resulting in wastage of already stretched invaluable health care resources.

    Matched MeSH terms: Chloroquine/therapeutic use*; Hydroxychloroquine/therapeutic use*
  6. Paul FM, Kleevens JW
    J Singapore Paediatr Soc, 1969 Apr;11(1):62-6.
    PMID: 5366340
    Matched MeSH terms: Chloroquine/therapeutic use
  7. Khoo KK
    Ann Trop Med Parasitol, 1981 Dec;75(6):591-5.
    PMID: 7325735 DOI: 10.1080/00034983.1981.11687489
    One hundred and nine (9·8%) out of 1103 malaria patients examined in Sabah were deficient in glucose-6-phosphate dehydrogenase (G6PD). Sixty-nine of these G6PD-deficient patients were randomly allocated to one of three treatment regimes with (a) chloroquine, (b) chloroquine and primaquine or (c) sulfadoxine-pyrimethamine (Fansidar). No haemolysis was observed in group (a); except for a single mild case, no haemolysis was seen in group (c). However, in the primaquine group (23 patients), haemolysis occurred in seven of the 16 patients who had complete G6PD deficiency. Of these seven, five required blood transfusion and the other two developed acute renal failure, one requiring peritoneal dialysis. In the Fansidar group (c), four of the 22 patients took more than 15 days to clear the parasitaemia. Chloroquine resistance to falciparum infection was common in the patients given this anti-malarial.
    Study site: Queen Elizabeth Hospital, Kola Kinabalu, Sabah, Malaysia
    Matched MeSH terms: Chloroquine/therapeutic use
  8. Fahmy MEA, Abdel-Aal AA, Hassan SI, Shalaby MA, Esmat M, Abdel Shafi IR, et al.
    Trop Biomed, 2023 Mar 01;40(1):115-123.
    PMID: 37356011 DOI: 10.47665/tb.40.1.018
    Toxoplasma gondii, the etiologic agent of toxoplasmosis, infects about 30 - 50% of the world population. The currently available anti-Toxoplasma agents have serious limitations. The present study aimed to investigate the effects of two antimalarials; buparvaquone (BPQ) and chloroquine (CQ), on immunocompromised mice with chronic cerebral toxoplasmosis, using spiramycin as a reference drug. The assessed parameters included the estimation of mortality rates (MR) among mice of the different study groups, in addition to the examination of the ultrastructural changes in the brain tissues by transmission electron microscopy. The results showed that only CQ treatment could decrease the MR significantly with zero deaths, while both spiramycin and BPQ caused an insignificant reduction of MR compared to the infected non-treated group. All the used drugs decreased the number of mature ruptured cysts significantly compared to the infected non-treated group, while only CQ increased the number of atrophic and necrotic cysts significantly. Furthermore, both spiramycin and BPQ improved the microvasculopathy and neurodegeneration accompanying the infection with different degrees of reactive astrocytosis and neuronal damage with the best results regarding the repair of the microvascular damage with less active glial cells, and normal neurons in the CQ-treated group. In conclusion, this study sheds light on CQ and its excellent impact on treating chronic cerebral toxoplasmosis in an immunocompromised mouse model.
    Matched MeSH terms: Chloroquine/pharmacology; Chloroquine/therapeutic use
  9. Madkhali AM, Abdulhaq AA, Atroosh WM, Ghzwani AH, Zain KA, Ghailan KY, et al.
    Parasitol Res, 2021 Nov;120(11):3771-3781.
    PMID: 34561749 DOI: 10.1007/s00436-021-07323-4
    This study investigated the polymorphism in the P. falciparum chloroquine resistance transporter (pfcrt) gene 11 years after chloroquine (CQ) cessation in Jazan region, southwestern Saudi Arabia. Two hundred and thirty-five P. falciparum isolates were amplified to detect mutations in the pfcrt gene. The pfcrt 76 T molecular marker for CQ resistance was detected in 66.4% (156/235) of the isolates, while the K76 CQ-sensitive wild type was detected in 33.6%. The pfcrt 74I and pfcrt 75E point mutations were each found to be present in 56.2% of isolates, while only four isolates (1.7%) were found to carry the pfcrt 72S mutation. Moreover, four pfcrt haplotypes were identified as follows: the CVIET triple-allele (56.2%), SVMET double-allele (1.7%) and CVMNT single-allele (8.5%) mutant haplotypes and the CVMNK wild haplotype (33.6%). The analysis also revealed significant associations between the prevalence of mutant pfcrt alleles and haplotypes and the age group, governorate and nationality of the patients as well as the parasitaemia level (p 
    Matched MeSH terms: Chloroquine/pharmacology; Chloroquine/therapeutic use
  10. Commons RJ, Simpson JA, Thriemer K, Chu CS, Douglas NM, Abreha T, et al.
    BMC Med, 2019 08 01;17(1):151.
    PMID: 31366382 DOI: 10.1186/s12916-019-1386-6
    BACKGROUND: Malaria causes a reduction in haemoglobin that is compounded by primaquine, particularly in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. The aim of this study was to determine the relative contributions to red cell loss of malaria and primaquine in patients with uncomplicated Plasmodium vivax.

    METHODS: A systematic review identified P. vivax efficacy studies of chloroquine with or without primaquine published between January 2000 and March 2017. Individual patient data were pooled using standardised methodology, and the haematological response versus time was quantified using a multivariable linear mixed effects model with non-linear terms for time. Mean differences in haemoglobin between treatment groups at day of nadir and day 42 were estimated from this model.

    RESULTS: In total, 3421 patients from 29 studies were included: 1692 (49.5%) with normal G6PD status, 1701 (49.7%) with unknown status and 28 (0.8%) deficient or borderline individuals. Of 1975 patients treated with chloroquine alone, the mean haemoglobin fell from 12.22 g/dL [95% CI 11.93, 12.50] on day 0 to a nadir of 11.64 g/dL [11.36, 11.93] on day 2, before rising to 12.88 g/dL [12.60, 13.17] on day 42. In comparison to chloroquine alone, the mean haemoglobin in 1446 patients treated with chloroquine plus primaquine was - 0.13 g/dL [- 0.27, 0.01] lower at day of nadir (p = 0.072), but 0.49 g/dL [0.28, 0.69] higher by day 42 (p  25% to  5 g/dL.

    CONCLUSIONS: Primaquine has the potential to reduce malaria-related anaemia at day 42 and beyond by preventing recurrent parasitaemia. Its widespread implementation will require accurate diagnosis of G6PD deficiency to reduce the risk of drug-induced haemolysis in vulnerable individuals.

    TRIAL REGISTRATION: This trial was registered with PROSPERO: CRD42016053312. The date of the first registration was 23 December 2016.

    Matched MeSH terms: Chloroquine/therapeutic use
  11. Commons RJ, Simpson JA, Thriemer K, Humphreys GS, Abreha T, Alemu SG, et al.
    Lancet Infect Dis, 2018 Sep;18(9):1025-1034.
    PMID: 30033231 DOI: 10.1016/S1473-3099(18)30348-7
    BACKGROUND: Chloroquine remains the mainstay of treatment for Plasmodium vivax malaria despite increasing reports of treatment failure. We did a systematic review and meta-analysis to investigate the effect of chloroquine dose and the addition of primaquine on the risk of recurrent vivax malaria across different settings.

    METHODS: A systematic review done in MEDLINE, Web of Science, Embase, and Cochrane Database of Systematic Reviews identified P vivax clinical trials published between Jan 1, 2000, and March 22, 2017. Principal investigators were invited to share individual patient data, which were pooled using standardised methods. Cox regression analyses with random effects for study site were used to investigate the roles of chloroquine dose and primaquine use on rate of recurrence between day 7 and day 42 (primary outcome). The review protocol is registered in PROSPERO, number CRD42016053310.

    FINDINGS: Of 134 identified chloroquine studies, 37 studies (from 17 countries) and 5240 patients were included. 2990 patients were treated with chloroquine alone, of whom 1041 (34·8%) received a dose below the target 25 mg/kg. The risk of recurrence was 32·4% (95% CI 29·8-35·1) by day 42. After controlling for confounders, a 5 mg/kg higher chloroquine dose reduced the rate of recurrence overall (adjusted hazard ratio [AHR] 0·82, 95% CI 0·69-0·97; p=0·021) and in children younger than 5 years (0·59, 0·41-0·86; p=0·0058). Adding primaquine reduced the risk of recurrence to 4·9% (95% CI 3·1-7·7) by day 42, which is lower than with chloroquine alone (AHR 0·10, 0·05-0·17; p<0·0001).

    INTERPRETATION: Chloroquine is commonly under-dosed in the treatment of vivax malaria. Increasing the recommended dose to 30 mg/kg in children younger than 5 years could reduce substantially the risk of early recurrence when primaquine is not given. Radical cure with primaquine was highly effective in preventing early recurrence and may also improve blood schizontocidal efficacy against chloroquine-resistant P vivax.

    FUNDING: Wellcome Trust, Australian National Health and Medical Research Council, and Bill & Melinda Gates Foundation.

    Matched MeSH terms: Chloroquine/therapeutic use*
  12. Atroosh WM, Al-Mekhlafi HM, Mahdy MA, Surin J
    Malar J, 2012;11:251.
    PMID: 22853645 DOI: 10.1186/1475-2875-11-251
    Malaria is still a public health problem in Malaysia with chloroquine (CQ) being the first-line drug in the treatment policy of uncomplicated malaria. There is a scarcity in information about the magnitude of Plasmodium falciparum CQ resistance. This study aims to investigate the presence of single point mutations in the P. falciparum chloroquine-resistance transporter gene (pfcrt) at codons 76, 271, 326, 356 and 371 and in P. falciparum multi-drug resistance-1 gene (pfmdr1) at codons 86 and 1246, as molecular markers of CQ resistance.
    Matched MeSH terms: Chloroquine/pharmacology*
  13. Bolton JM
    Med J Malaya, 1972 Sep;27(1):10-9.
    PMID: 4264819
    Matched MeSH terms: Chloroquine/administration & dosage
  14. Barber BE, Grigg MJ, William T, Yeo TW, Anstey NM
    Trends Parasitol, 2017 03;33(3):242-253.
    PMID: 27707609 DOI: 10.1016/j.pt.2016.09.002
    Plasmodium knowlesi occurs across Southeast Asia and is the most common cause of malaria in Malaysia. High parasitaemias can develop rapidly, and the risk of severe disease in adults is at least as high as in falciparum malaria. Prompt initiation of effective treatment is therefore essential. Intravenous artesunate is highly effective in severe knowlesi malaria and in those with moderately high parasitaemia but otherwise uncomplicated disease. Both chloroquine and artemisinin-combination therapy (ACT) are highly effective for uncomplicated knowlesi malaria, with faster parasite clearance times and lower anaemia rates with ACT. Given the difficulties with microscope diagnosis of P. knowlesi, a unified treatment strategy of ACT for all Plasmodium species is recommended in coendemic regions.
    Matched MeSH terms: Chloroquine/therapeutic use*
  15. Ibraheem ZO, Abdul Majid R, Mohd Noor S, Mohd Sidek H, Basir R
    Iran J Parasitol, 2015 Oct-Dec;10(4):577-83.
    PMID: 26811724
    Nowadays, scourge of malaria as a fatalistic disease has increased due to emergence of drug resistance and tolerance among different strains of Plasmodium falciparum. Emergence of chloroquine (CQ) resistance has worsened the calamity as CQ is still considered the most efficient, safe and cost effective drug among other antimalarials. This urged the scientists to search for other alternatives or sensitizers that may be able to augment CQ action and reverse its resistance.
    Matched MeSH terms: Chloroquine
  16. Lai, Jing-Wei, Ng, Chew-Hee, Lim, Yvonne Ai-Lian, Mohd Jamil Maah
    MyJurnal
    Introduction: The spread of multidrug-resistant malaria parasite – Plasmodium sp. to commercially available antimalarial drugs, i.e. artemisinin-based combination therapies (ACTs) and chloroquine (CQ), has become a global treat to eliminate malaria. To limit the impact of antimalarial drug resistance, a new potent and affordable alternative is urgently needed. A number of metal-based compounds (metallodrugs) have been found active against Plasmodium falciparum, the species that causes potentially fatal cerebral malaria, as they are ease in ligand grafting of multi-functional groups. Ferroquine (FQ) is one of the metalloantimalarial drugs that is currently undergoing clinical trials. Methods: In this study, a series of ternary copper(II) and zinc(II) complexes – Cu(phen)(edda) 1, Zn(phen)(edda) 2, [Cu(phen)(cdmg)] NO3 3 and [Zn(phen)(c-dmg)]NO3 4 were synthesized and characterized by the following tests: Fourier transformed infrared (FTIR), CHN elemental analysis, UV-Vis spectroscopy, molar conductivity and magnetic susceptibility measurements. Results: In vitro hemolytic and antimalarial assays using SYBR Green I dye were done to determine the biological properties of these complexes. Preliminary biological evaluation demonstrated that all the complexes 1, 2, 3 and 4 exhibit toxicity against the sensitive blood-stage Plasmodium falciparum 3D7 with IC50 in μM range. Conclusion: Thus, metal complex is a potentially viable candidate as antimalarial drug to overcome the emergence of drug resistance.
    Matched MeSH terms: Chloroquine
  17. Chin EZ, Chang WJ, Tan HY, Liew SY, Lau YL, Ng YL, et al.
    Bioorg Med Chem Lett, 2024 May 01;103:129701.
    PMID: 38484804 DOI: 10.1016/j.bmcl.2024.129701
    Malaria, a devastating disease, has claimed numerous lives and caused considerable suffering, with young children and pregnant women being the most severely affected group. However, the emergence of multidrug-resistant strains of Plasmodium and the adverse side effects associated with existing antimalarial drugs underscore the urgent need for the development of novel, well-tolerated, and more efficient drugs to combat this global health threat. To address these challenges, six new hydantoins derivatives were synthesized and evaluated for their in vitro antiplasmodial activity. Notably, compound 2c exhibited excellent inhibitory activity against the tested Pf3D7 strain, with an IC50 value of 3.97 ± 0.01 nM, three-fold better than chloroquine. Following closely, compound 3b demonstrated an IC50 value of 27.52 ± 3.37 µM against the Pf3D7 strain in vitro. Additionally, all the hydantoins derivatives tested showed inactive against human MCR-5 cells, with an IC50 value exceeding 100 μM. In summary, the hydantoin derivative 2c emerges as a promising candidate for further exploration as an antiplasmodial compound.
    Matched MeSH terms: Chloroquine/pharmacology
  18. Mphahlele MJ, Mmonwa MM, Choong YS
    Molecules, 2017 Jul 02;22(7).
    PMID: 28671598 DOI: 10.3390/molecules22071099
    A series of novel N-((2,5-diaryl-3-trifluoroacetyl)-1H-indol-7-yl)acetamides has been prepared via a successive and one-pot reaction sequence involving initial trifluoroacetic acid-mediated Beckmann rearrangement of the oximes derived from the 1-(2,5-diaryl-1H-indol-7-yl)ethanones, followed by trifluoroacetylation of the incipient N-(2,5-diaryl-1H-indol-7-yl)-acetamides with trifluoroacetic anhydride. The prepared compounds were evaluated for potential in vitro antiplasmodial properties. Preliminary results from antiplasmodial activity against the chloroquine-sensitive 3D7 strain of Plasmodium falciparum revealed that a combination of 2-(4-flurophenyl)- and 5-(4-fluorophenyl) or 2-(4-flurophenyl)- and 4-fluorostyryl groups in compounds 3(a,f) and 4(a,g), for example, is required for biological activity for both series of compounds. Their possible mode of action against the plasmodial parasite is explained theoretically through molecular docking of the most active compounds against the parasite lactate dehydrogenase (pLDH). These compounds were docked at the entrance of NAD+ in pLDH presumably hindering entry of lactate to cause the observed inhibition effect of pLDH. The four compounds were found to exhibit low toxicity against monkey kidney Vero cells at the highest concentrations tested.
    Matched MeSH terms: Chloroquine/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links