Displaying publications 1 - 20 of 54 in total

Abstract:
Sort:
  1. Li Y, Qin T, Ingle T, Yan J, He W, Yin JJ, et al.
    Arch Toxicol, 2017 Jan;91(1):509-519.
    PMID: 27180073 DOI: 10.1007/s00204-016-1730-y
    In spite of many reports on the toxicity of silver nanoparticles (AgNPs), the mechanisms underlying the toxicity are far from clear. A key question is whether the observed toxicity comes from the silver ions (Ag(+)) released from the AgNPs or from the nanoparticles themselves. In this study, we explored the genotoxicity and the genotoxicity mechanisms of Ag(+) and AgNPs. Human TK6 cells were treated with 5 nM AgNPs or silver nitrate (AgNO3) to evaluate their genotoxicity and induction of oxidative stress. AgNPs and AgNO3 induced cytotoxicity and genotoxicity in a similar range of concentrations (1.00-1.75 µg/ml) when evaluated using the micronucleus assay, and both induced oxidative stress by measuring the gene expression and reactive oxygen species in the treated cells. Addition of N-acetylcysteine (NAC, an Ag(+) chelator) to the treatments significantly decreased genotoxicity of Ag(+), but not AgNPs, while addition of Trolox (a free radical scavenger) to the treatment efficiently decreased the genotoxicity of both agents. In addition, the Ag(+) released from the highest concentration of AgNPs used for the treatment was measured. Only 0.5 % of the AgNPs were ionized in the culture medium and the released silver ions were neither cytotoxic nor genotoxic at this concentration. Further analysis using electron spin resonance demonstrated that AgNPs produced hydroxyl radicals directly, while AgNO3 did not. These results indicated that although both AgNPs and Ag(+) can cause genotoxicity via oxidative stress, the mechanisms are different, and the nanoparticles, but not the released ions, mainly contribute to the genotoxicity of AgNPs.
    Matched MeSH terms: Chromans/pharmacology
  2. Nathan FM, Singh VA, Dhanoa A, Palanisamy UD
    BMC Cancer, 2011;11:382.
    PMID: 21871117 DOI: 10.1186/1471-2407-11-382
    Oxidative stress is characterised by an increased level of reactive oxygen species (ROS) that disrupts the intracellular reduction-oxidation (redox) balance and has been implicated in various diseases including cancer. Malignant tumors of connective tissue or sarcomas account for approximately 1% of all cancer diagnoses in adults and around 15% of paediatric malignancies per annum. There exists no information on the alterations of oxidant/antioxidant status of sarcoma patients in literature. This study was aimed to determine the levels of oxidative stress and antioxidant defence in patients with primary bone and soft tissue sarcoma and to investigate if there exists any significant differences in these levels between both the sarcomas.
    Matched MeSH terms: Chromans/metabolism
  3. Lim SW, Loh HS, Ting KN, Bradshaw TD, Zeenathul NA
    PMID: 25480449 DOI: 10.1186/1472-6882-14-469
    Tocotrienols, especially the gamma isomer was discovered to possess cytotoxic effects associated with the induction of apoptosis in numerous cancers. Individual tocotrienol isomers are believed to induce dissimilar apoptotic mechanisms in different cancer types. This study was aimed to compare the cytotoxic potency of alpha-, gamma- and delta-tocotrienols, and to explore their resultant apoptotic mechanisms in human lung adenocarcinoma A549 and glioblastoma U87MG cells which are scarcely researched.
    Matched MeSH terms: Chromans/pharmacology; Chromans/therapeutic use*
  4. Abdul Rahman A, Jamal AR, Harun R, Mohd Mokhtar N, Wan Ngah WZ
    PMID: 24980711 DOI: 10.1186/1472-6882-14-213
    Gamma-tocotrienol (GTT), an isomer of vitamin E and hydroxy-chavicol (HC), a major bioactive compound in Piper betle, has been reported to possess anti-carcinogenic properties by modulating different cellular signaling events. One possible strategy to overcome multi-drug resistance and high toxic doses of treatment is by applying combinational therapy especially using natural bioactives in cancer treatment.
    Matched MeSH terms: Chromans/administration & dosage; Chromans/pharmacology*
  5. Abdul Rahman Sazli F, Jubri Z, Abdul Rahman M, Karsani SA, Md Top AG, Wan Ngah WZ
    PMID: 25886747 DOI: 10.1186/s12906-015-0590-y
    To determine the antiproliferative effect of gamma-tocotrienol (GTT) treatment on differential protein expression in HepG2 cells.
    Matched MeSH terms: Chromans/metabolism
  6. Tan JK, Jaafar F, Makpol S
    BMC Complement Altern Med, 2018 Nov 29;18(1):314.
    PMID: 30497457 DOI: 10.1186/s12906-018-2383-6
    BACKGROUND: Replicative senescence of human diploid fibroblasts (HDFs) has been used as a model to study mechanisms of cellular aging. Gamma-tocotrienol (γT3) is one of the members of vitamin E family which has been shown to increase proliferation of senescent HDFs. However, the modulation of protein expressions by γT3 in senescent HDFs remains to be elucidated. Therefore, this study aimed to determine the differentially expressed proteins (DEPs) in young and senescent HDFs; and in vehicle- and γT3-treated senescent HDFs using label-free quantitative proteomics.

    METHODS: Whole proteins were extracted and digested in-gel with trypsin. Peptides were detected by Orbitrap liquid chromatography mass spectrometry. Mass spectra were identified and quantitated by MaxQuant software. The data were further filtered and analyzed statistically using Perseus software to identify DEPs. Functional annotations of DEPs were performed using Panther Classification System.

    RESULTS: A total of 1217 proteins were identified in young and senescent cells, while 1218 proteins in vehicle- and γT3-treated senescent cells. 11 DEPs were found in young and senescent cells which included downregulation of platelet-derived growth factor (PDGF) receptor beta and upregulation of tubulin beta-2A chain protein expressions in senescent cells. 51 DEPs were identified in vehicle- and γT3-treated senescent cells which included upregulation of 70 kDa heat shock protein, triosephosphate isomerase and malate dehydrogenase protein expressions in γT3-treated senescent cells.

    CONCLUSIONS: PDGF signaling and cytoskeletal structure may be dysregulated in senescent HDFs. The pro-proliferative effect of γT3 on senescent HDFs may be mediated through the stimulation of cellular response to stress and carbohydrate metabolism. The expressions and roles of these proteins in relation to cellular senescence are worth further investigations. Data are available via ProteomeXchange with identifier PXD009933.

    Matched MeSH terms: Chromans/pharmacology*
  7. Zainuddin A, Chua KH, Abdul Rahim N, Makpol S
    BMC Mol. Biol., 2010;11:59.
    PMID: 20707929 DOI: 10.1186/1471-2199-11-59
    Several genes have been used as housekeeping genes and choosing an appropriate reference gene is important for accurate quantitative RNA expression in real time RT-PCR technique. The expression levels of reference genes should remain constant between the cells of different tissues and under different experimental conditions. The purpose of this study was to determine the effect of different experimental treatments on the expression of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA so that the reliability of GAPDH as reference gene for quantitative real time RT-PCR in human diploid fibroblasts (HDFs) can be validated. HDFs in 4 different treatment groups viz; young (passage 4), senescent (passage 30), H2O2-induced oxidative stress and gamma-tocotrienol (GTT)-treated groups were harvested for total RNA extraction. Total RNA concentration and purity were determined prior to GAPDH mRNA quantification. Standard curve of GAPDH expression in serial diluted total RNA, melting curve analysis and agarose gel electrophoresis were used to determine the reliability of GAPDH as reference gene.
    Matched MeSH terms: Chromans/pharmacology
  8. Hermizi H, Faizah O, Ima-Nirwana S, Ahmad Nazrun S, Norazlina M
    Calcif. Tissue Int., 2009 Jan;84(1):65-74.
    PMID: 19020790 DOI: 10.1007/s00223-008-9190-x
    This study was conducted to determine the effectiveness of three forms of vitamin E supplements following nicotine treatment on bone histomorphometric parameters in an adult male rat model. Rats were divided into seven groups: baseline (B, killed without treatment), control (C, normal saline for 4 months), nicotine (N, nicotine for 2 months), nicotine cessation (NC), tocotrienol-enhanced fraction (TEF), gamma-tocotrienol (GTT), and alpha-tocopherol (ATF). Treatments for the NC, TEF, GTT, and ATF groups were performed in two phases. For the first 2 months they were given nicotine (7 mg/kg), and for the following 2 months nicotine administration was stopped and treatments with respective vitamin E preparations (60 mg/kg) were commenced except for the NC group, which was allowed to recover without treatment. Rats in the N and NC groups had lower trabecular bone volume, mineral appositional rate (MAR), and bone formation rate (BFR/BS) and higher single labeled surface and osteoclast surface compared to the C group. Vitamin E treatment reversed these nicotine effects. Both the TEF and GTT groups, but not the ATF group, had a significantly higher trabecular thickness but lower eroded surface (ES/BS) than the C group. The tocotrienol-treated groups had lower ES/BS than the ATF group. The GTT group showed a significantly higher MAR and BFR/BS than the TEF and ATF groups. In conclusion, nicotine induced significant bone loss, while vitamin E supplements not only reversed the effects but also stimulated bone formation significantly above baseline values. Tocotrienol was shown to be slightly superior compared to tocopherol. Thus, vitamin E, especially GTT, may have therapeutic potential to repair bone damage caused by chronic smoking.
    Matched MeSH terms: Chromans/pharmacology*
  9. Loganathan R, Selvaduray KR, Nesaretnam K, Radhakrishnan AK
    Cell Prolif, 2013 Apr;46(2):203-13.
    PMID: 23510475 DOI: 10.1111/cpr.12014
    OBJECTIVES: Tocotrienols and tocopherols are members of the vitamin E family, with similar structures; however, only tocotrienols have been reported to achieve potent anti-cancer effects. The study described here has evaluated anti-cancer activity of vitamin E to elucidate mechanisms of cell death, using human breast cancer cells.

    MATERIALS AND METHODS: Anti-cancer activity of a tocotrienol-rich fraction (TRF) and a tocotrienol-enriched fraction (TEF) isolated from palm oil, as well as pure vitamin E analogues (α-tocopherol, α-, δ- and γ-tocotrienols) were studied using highly aggressive triple negative MDA-MB-231 cells and oestrogen-dependent MCF-7 cells, both of human breast cancer cell lines. Cell population growth was evaluated using a Coulter particle counter. Cell death mechanism, poly(ADP-ribose) polymerase cleavage and levels of NF-κB were determined using commercial ELISA kits.

    RESULTS: Tocotrienols exerted potent anti-proliferative effects on both types of cell by inducing apoptosis, the underlying mechanism of cell death being ascertained using respective IC50 concentrations of all test compounds. There was marked induction of apoptosis in both cell lines by tocotrienols compared to treatment with Paclitaxel, which was used as positive control. This activity was found to be associated with cleavage of poly(ADP-ribose) polymerase (a DNA repair protein), demonstrating involvement of the apoptotic cell death signalling pathway. Tocotrienols also inhibited expression of nuclear factor kappa-B (NF-κB), which in turn can increase sensitivity of cancer cells to apoptosis.

    CONCLUSION: Tocotrienols induced anti-proliferative and apoptotic effects in association with DNA fragmentation, poly(ADP-ribose) polymerase cleavage and NF-κB inhibition in the two human breast cancer cell lines.

    Matched MeSH terms: Chromans/pharmacology*; Chromans/chemistry
  10. Then SM, Mazlan M, Mat Top G, Wan Ngah WZ
    Cell Mol Neurobiol, 2009 Jun;29(4):485-96.
    PMID: 19172392 DOI: 10.1007/s10571-008-9340-8
    Besides acting as potent free radical scavengers, tocopherols and tocotrienols have been known to have non-antioxidant properties such as the involvement of alpha-tocopherol (alphaT) in PKC pathway and the anti-cancer properties of gamma-tocotrienol (gammaT3). This study aims to elucidate whether protective effects shown by alphaT and gammaT3 in H(2)O(2)-induced neuron cultures have anti-apoptotic or pro-apoptotic tendency toward the initiation of neuronal apoptosis. H(2)O(2) is used to induce apoptosis in primary cerebellar neuron cultures which is attenuated by pretreatment of alphaT or gammaT3 at concentrations < or =10 microM. Similar to our previous work, gammaT3 was found to be neurotoxic at concentrations > or =100 microM, whereas alphaT showed no neurotoxicity. Cellular uptake of gammaT3 was higher than that of alphaT. Treating cells simultaneously with either gammaT3 or alphaT and with then H(2)O(2) led to higher expression of Bax and Bcl-2 than in neurons exposed to H(2)O(2) alone. Analysis of Bcl-2/Bax ratio as 'survival index' showed that both pretreatment of gammaT3 and alphaT followed by H(2)O(2) increase the 'survival index' of Bcl-2/Bax ratio compared to H(2)O(2)-treated cells, while treatment of gammaT3 alone decrease the ratio compared to unchanged Bcl2/Bax ratio of similar treatment with alphaT alone. Similar treatment of gammaT3 decreased p53 expression and activates p38 MAPK phosphorylation, whereas alphaT did not alter its expression compared to H(2)O(2)-treated cells. Treating neurons with only gammaT3 or alphaT increased the expression of Bax, Bcl-2, p53, and p38 MAPK compared to control with gammaT3 exerting stronger expression for proteins involved than alphaT. In conclusion, low doses of gammaT3 and alphaT confer neuroprotection to H(2)O(2)-treated neurons via their antioxidant mechanism but gammaT3 has stronger pro-apoptosis tendency than alphaT by activating molecules involved in the neuronal apoptotic pathway in the absence of H(2)O(2).
    Matched MeSH terms: Chromans/pharmacology
  11. Tan SW, Ramasamy R, Abdullah M, Vidyadaran S
    Cell Immunol, 2011;271(2):205-9.
    PMID: 21839427 DOI: 10.1016/j.cellimm.2011.07.012
    Anti-inflammatory actions of the vitamin E fragment tocotrienol have not been described for microglia. Here, we screened palm α-, γ- and δ-tocotrienol isoforms and Tocomin® 50% (contains spectrum of tocotrienols and tocopherols) for their ability to limit nitric oxide (NO) production by BV2 microglia. Microglia were treated with varying doses of tocotrienols for 24h and stimulated with 1 μg/ml lipopolysaccharide (LPS). All tocotrienol isoforms reduced NO release by LPS-stimulated microglia, with 50 μM being the most potent tocotrienol dose. Of the isoforms tested, δ-tocotrienol lowered NO levels the most, reducing NO by approximately 50% at 48 h post-LPS treatment (p
    Matched MeSH terms: Chromans/pharmacology
  12. Newaz MA, Nawal NN
    Clin Exp Hypertens, 1999 Nov;21(8):1297-313.
    PMID: 10574414
    The aim of this study was to determine the effects of gamma tocotrienol on lipid peroxidation and total antioxidant status of spontaneously hypertensive rats (SHR), comparing them with normal Wistar Kyoto (WKY) rats. SHR were divided into three groups and treated with different doses of gamma tocotrienol (gamma1, 15 mg/kg diet; gamma2, 30 mg/kg diet and gamma3, 150 mg/kg diet). Normal WKY and untreated SHR were used as normal (N) and hypertensive control (HC). Blood pressure were recorded every fortnightly for three months. At the end of the trial, animals were killed and measurement of plasma total antioxidant status, plasma superoxide dismutase (SOD) activity and lipid peroxide levels in plasma and blood vessels were carried out following well established methods. Study shows that lipid peroxides were significantly higher in hypertensive plasma and blood vessels compared to that of normal rats (Plasma- N: 0.06+/-0.01, HC: 0.13+/-0.008; p<0.001, B1. Vessels - N: 0.47+/-0.17, HC: 0.96+/-0.37; p<0.001). SOD activity was significantly lower in hypertensive than normal rats (N = 148.58+/-29.56 U/ml, HC = 110.08+/-14.36 U/ml; p = 0.014). After three months of antioxidant trial with gamma-tocotrienol, it was found that all the treated groups have reduced plasma lipid peroxides concentration but was only significant for group gamma1 (gamma1: 0.109+/-0.026, HC: 0.132+/-0.008; p = 0.034). On the other hand, lipid peroxides in blood vessels reduced significantly in all treated groups (gamma1; p<0.05, gamma2; p<0.001, gamma3; p<0.005). All the three treated groups showed improve total antioxidant status (p<0.001) significantly. SOD activity also showed significant improvement in all groups (gamma1: p<0.001, gamma2: p<0.05, gamma3: p<0.001). Correlation studies showed that, total antioxidant status (TAS) and SOD were significantly negatively correlated with blood pressure in normal rats (p = 0.007; p = 0.008) but not in SHR control. This correlation regained in all three groups SHR's after treatment with tocotrienol. Lipid peroxides in blood vessel and plasma showed a positive correlation with blood pressure in normal and SHR control. This correlation also remains in treated groups significantly except that in gamma3 where positive correlation with plasma lipid peroxide was not significant. In conclusion it was found that antioxidant supplement of gamma-tocotrienol may prevent development of increased blood pressure, reduce lipid peroxides in plasma and blood vessels and enhanced total antioxidant status including SOD activity.
    Matched MeSH terms: Chromans/pharmacology*
  13. Goon JA, Nor Azman NHE, Abdul Ghani SM, Hamid Z, Wan Ngah WZ
    Clin Nutr ESPEN, 2017 10;21:1-12.
    PMID: 30014863 DOI: 10.1016/j.clnesp.2017.07.004
    Vitamin E is a fat-soluble compound and powerful antioxidant that have been shown to protect the cell membranes against damage caused by free radicals. Human vitamin E supplementation studies are usually limited to α-tocopherol but currently tocotrienols are also available. This study aims to compare the effects of tocotrienol rich fraction (TRF) with α-tocopherol (α-TF) supplementation on oxidative stress in healthy male and female older adults aged 50-55 years old. A total of 71 subjects both male and female aged between 50 and 55 years were divided into groups receiving placebo (n = 23), α-TF (n = 24) and TRF (n = 24) for six months. Blood was taken at baseline (month 0), 3 months and 6 months osf supplementation for determination of plasma malondialdehyde (MDA), protein carbonyl, total DNA damage, vitamin D concentration and vitamin E isomers. α-TF supplementation reduced plasma MDA and protein carbonyl in female subjects after 3 and 6 months. TRF supplementation reduced MDA levels in both males and females as early as 3 months while DNA damage was reduced in females only at 6 months. Supplementation with α-TF and TRF increased plasma vitamin D concentration in both males and females after 6 months, but vitamin D concentration in male subjects were significantly higher compared to female subjects in TRF group. Vitamin E isomer determination showed α-TF, α-tocotrienol and γ-tocotrienol were increased in both male and female subjects. In conclusion, TRF supplementation effects were different from α-TF in reducing oxidative stress markers and vitamin D levels with a more pronounced effect in female subjects.
    Matched MeSH terms: Chromans/administration & dosage*; Chromans/blood
  14. Makpol S, Zainuddin A, Chua KH, Yusof YA, Ngah WZ
    Clinics (Sao Paulo), 2012;67(2):135-43.
    PMID: 22358238
    OBJECTIVE: Human diploid fibroblasts undergo a limited number of cellular divisions in culture and progressively reach a state of irreversible growth arrest, a process termed cellular aging. The beneficial effects of vitamin E in aging have been established, but studies to determine the mechanisms of these effects are ongoing. This study determined the molecular mechanism of γ-tocotrienol, a vitamin E homolog, in the prevention of cellular aging in human diploid fibroblasts using the expression of senescence-associated genes.

    METHODS: Primary cultures of young, pre-senescent, and senescent fibroblast cells were incubated with γ-tocotrienol for 24 h. The expression levels of ELN, COL1A1, MMP1, CCND1, RB1, and IL6 genes were determined using the quantitative real-time polymerase chain reaction. Cell cycle profiles were determined using a FACSCalibur Flow Cytometer.

    RESULTS: The cell cycle was arrested in the G(0)/G(1) phase, and the percentage of cells in S phase decreased with senescence. CCND1, RB1, MMP1, and IL6 were upregulated in senescent fibroblasts. A similar upregulation was not observed in young cells. Incubation with γ-tocotrienol decreased CCND1 and RB1 expression in senescent fibroblasts, decreased cell populations in the G(0)/G(1) phase and increased cell populations in the G(2)/M phase. γ-Tocotrienol treatment also upregulated ELN and COL1A1 and downregulated MMP1 and IL6 expression in young and senescent fibroblasts.

    CONCLUSION: γ-Tocotrienol prevented cellular aging in human diploid fibroblasts, which was indicated by the modulation of the cell cycle profile and senescence-associated gene expression.

    Matched MeSH terms: Chromans/pharmacology*
  15. Ong FB, Wan Ngah WZ, Shamaan NA, Md Top AG, Marzuki A, Khalid AK
    PMID: 7903615
    1. The effect of tocotrienol and tocopherol on glutathione S-transferase (GST) and gamma-glutamyl transpeptidase (GGT) activities in cultured rat hepatocytes were investigated. 2. Tocotrienol and tocopherol significantly decreased GGT activities at 5 days in culture but tocotrienol also significantly decreased GGT activities at 1-2 days. 3. Tocotrienol and tocopherol treatment significantly decreased GST activities at 3 days compared to the control but tocotrienol also decreased GST activities at 1-3 days. 4. Tocotrienol showed a more pronounced effect at a dosage of greater than 50 microM tocotrienol at 1-3 days in culture compared to the control.
    Matched MeSH terms: Chromans/pharmacology*
  16. Chia LL, Jantan I, Chua KH
    Curr Pharm Biotechnol, 2017;18(7):560-568.
    PMID: 28786357 DOI: 10.2174/1389201018666170808144703
    BACKGROUND: Tocotrienols (T3) are the naturally occurring vitamin E derivatives that possess antioxidant properties and therapeutic potential in diabetic complications. The bioactivities of the derivatives are determined by the number and arrangement of methyl substitution on the structure.

    OBJECTIVE: The objective of this study was to determine the effects of T3 derivatives, σ-T3, γ-T3 and α-T3 on insulin secretion of rat pancreatic islets in a dynamic culture.

    METHOD: Pancreatic islets isolated from male Wistar rats were treated with T3 for 1 h at 37°C in a microfluidic system with continuous operation that provided a stable cell culture environment. Glucose (2.8 mM and 16.7 mM, as basal and stimulant, respectively) and potassium chloride (KCl) (30 mM) were added to the treatment in calcium free medium. The supernatant was collected for insulin measurements.

    RESULTS: Short-term exposure (1 h) of σ-T3 to β cells in the stimulant glucose condition significantly potentiated insulin secretion in a dose-dependent manner. γ-T3 and α-T3 also displayed dosedependent effect but were less effective in the activation of insulin secretion. Essentially, KCl, a pancreatic β cell membrane depolarizing agent, added into the treatment further enhanced the insulin secretion of σ-T3, γ-T3 and α-T3 with ED50 values of 504, 511 and 588 µM, respectively.

    CONCLUSION: The findings suggest the potential of σ-T3 in regulating glucose-stimulated insulin secretion (GSIS) in response to the intracellular calcium especially in the presence of KCl.

    Matched MeSH terms: Chromans/pharmacology*
  17. Abd Manan N, Mohamed N, Shuid AN
    PMID: 22956976 DOI: 10.1155/2012/680834
    Oxidative stress and apoptosis can disrupt the bone formation activity of osteoblasts which can lead to osteoporosis. This study was conducted to investigate the effects of γ-tocotrienol on lipid peroxidation, antioxidant enzymes activities, and apoptosis of osteoblast exposed to hydrogen peroxide (H(2)O(2)). Osteoblasts were treated with 1, 10, and 100 μM of γ-tocotrienol for 24 hours before being exposed to 490 μM (IC(50)) H(2)O(2) for 2 hours. Results showed that γ-tocotrienol prevented the malondialdehyde (MDA) elevation induced by H(2)O(2) in a dose-dependent manner. As for the antioxidant enzymes assays, all doses of γ-tocotrienol were able to prevent the reduction in SOD and CAT activities, but only the dose of 1 μM of GTT was able to prevent the reduction in GPx. As for the apoptosis assays, γ-tocotrienol was able to reduce apoptosis at the dose of 1 and 10 μM. However, the dose of 100 μM of γ-tocotrienol induced an even higher apoptosis than H(2)O(2). In conclusion, low doses of γ-tocotrienol offered protection for osteoblasts against H(2)O(2) toxicity, but itself caused toxicity at the high doses.
    Matched MeSH terms: Chromans
  18. Radhakrishnan A, Tudawe D, Chakravarthi S, Chiew GS, Haleagrahara N
    Exp Ther Med, 2014 May;7(5):1408-1414.
    PMID: 24940448
    Tocotrienols exhibit a significant anti-inflammatory and antioxidant effect in numerous human diseases. However, the anti-inflammatory and antioxidant effects of tocotrienols in arthritic conditions are not well documented. Therefore, the effect of γ-tocotrienol supplementation against oxidative stress and joint pathology in collagen-induced arthritis in rats was investigated in the present study. Adult female Dark Agouti rats were randomly divided into groups: Control, γ-tocotrienol alone, arthritis alone and arthritis with γ-tocotrienol. Arthritis was induced using 4 mg/kg body weight collagen in complete Freund's adjuvant. The rats were treated orally with 5 mg/kg body weight of γ-tocotrienol between day 21 and day 45. After 45 days, serum C-reactive protein (CRP), tumor necrosis factor (TNF)-α, superoxide dismutase (SOD) and total glutathione (GSH) assays were conducted. γ-tocotrienol significantly reduced the arthritis-induced changes in body weight, CRP, TNF-α, SOD and the total GSH levels. There was a significant reduction in the arthritis-induced histopathological changes in the γ-tocotrienol treatment group. The data indicated that administration of γ-tocotrienol resulted in a significant antioxidant and anti-inflammatory effect on collagen-induced arthritis; therefore, γ-tocotrienol may have therapeutic potential as a long-term anti-arthritic agent in rheumatoid arthritis therapy.
    Matched MeSH terms: Chromans
  19. Makpol S, Shamaan NA, Jarien Z, Top AG, Khalid BA, Wan Ngah WZ
    Gen. Pharmacol., 1997 Apr;28(4):589-92.
    PMID: 9147029
    1. alpha-Tocopherol (alpha-T) and gamma-tocotrienol (gamma-T) were supplemented continuously for 8 weeks in the diets of normal rats and rats chemically induced with cancer using diethylnitrosamine (DEN), 2-acetylaminofluorene (AAF) and partial hepatectomy. Hepatocarcinogenesis was followed by determining the plasma gamma-glutamyl-transpeptidase (GGT) and alkaline phosphatase (ALP) activities as well as placental glutathione S-transferase (PGST) and GGT activities histochemically, at 4-week intervals. 2. Male Rattus norvegicus were supplemented alpha-T and gamma-T at two different doses of 30 and 300 mg/kg diet. The supplementation was started at three different times: simultaneously with DEN administration; 4 weeks; and 8 weeks after DEN administration. 3. Elevation of plasma GGT activities and formation of PGST and GGT positive foci were attenuated significantly (P < 0.05) when alpha-T and gamma-T were supplemented simultaneously with cancer induction. Supplementation begun 4 and 8 weeks after cancer induction did not affect plasma enzyme activities and formation of enzyme-positive foci. 4. alpha-T was more effective than gamma-T, and a lower dose of 30 mg/kg was found to be more effective in reducing the severity of hepatocarcinogenesis.
    Matched MeSH terms: Chromans/administration & dosage*
  20. Fasahat, P., Abdullah, A., Muhammad, K., Wickneswari, R.
    MyJurnal
    Tocochromanols (tocopherols and tocotrienols) unitedly known as vitamin E, are the necessary antioxidant components of both human and animal diets. There is a considerable interest in plants with increased or customized vitamin E content, due to their potential health benefits. To quantify the tocochromanol content and determine the expression of a key tocotrienol biosynthesis gene among a set of contrasting red pericarp and light brown rice genotypes of advanced breeding lines together with their parents; expression pattern of homogentisate geranylgeranyl transferase (HGGT), the key gene was studied by semi-quantitative RT-PCR in milky and matured grain stages. Vitamin E analysis was carried out by high performance liquid chromatography (HPLC). The chloroform-methanolic extracts prepared from red pericarp and light brown rice advanced breeding lines showed significant differences for vitamin E content. Averaged across all samples, the content of γ-tocotrienol > α-tocopherol > α-tocotrienol > γ-tocopherol > δ-tocotrienol, and total E vitamin content ranged from 10.30 to 31.65 µg/g. Genotype G37 (red pericarp) was found to have higher expression than G7 (light brown) and G33 (red pericarp) at both grain development stages but lower than both parents whereas their transcript levels were comparatively lower in mature grain, which indicates their possible regulation by plant growth stage. HPLC results of γ-tocotrienol content supported gene expression results with the exception of the recurrent parent MR219.
    Matched MeSH terms: Chromans
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links