Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Ahmad AA, Hameed BH
    J Hazard Mater, 2010 Mar 15;175(1-3):298-303.
    PMID: 19883979 DOI: 10.1016/j.jhazmat.2009.10.003
    In this work, the adsorption potential of bamboo waste based granular activated carbon (BGAC) to remove C.I. Reactive Black (RB5) from aqueous solution was investigated using fixed-bed adsorption column. The effects of inlet RB5 concentration (50-200mg/L), feed flow rate (10-30 mL/min) and activated carbon bed height (40-80 mm) on the breakthrough characteristics of the adsorption system were determined. The highest bed capacity of 39.02 mg/g was obtained using 100mg/L inlet dye concentration, 80 mm bed height and 10 mL/min flow rate. The adsorption data were fitted to three well-established fixed-bed adsorption models namely, Adam's-Bohart, Thomas and Yoon-Nelson models. The results fitted well to the Thomas and Yoon-Nelson models with coefficients of correlation R(2)>or=0.93 at different conditions. The BGAC was shown to be suitable adsorbent for adsorption of RB5 using fixed-bed adsorption column.
    Matched MeSH terms: Coloring Agents/isolation & purification*
  2. Ahmad AA, Hameed BH
    J Hazard Mater, 2009 Dec 30;172(2-3):1538-43.
    PMID: 19740605 DOI: 10.1016/j.jhazmat.2009.08.025
    In this work, activated carbon was prepared from bamboo waste by chemical activation method using phosphoric acid as activating agent. The activated carbon was evaluated for chemical oxygen demand (COD) and color reduction of a real textile mill effluent. A maximum reduction in color and COD of 91.84% and 75.21%, respectively was achieved. As a result, the standard B discharge limit of color and COD under the Malaysian Environmental Quality act 1974 was met. The Freundlich isotherm model was found best to describe the obtained equilibrium adsorption data at 30 degrees C. The Brunauer-Emmett-Teller (BET) surface area, total pore volume and the average pore diameter were 988.23 m(2)/g, 0.69 cm(3)/g and 2.82 nm, respectively. Various functional groups on the prepared bamboo activated carbon (BAC) were determined from the FTIR results.
    Matched MeSH terms: Coloring Agents/isolation & purification*
  3. Ahmad T, Danish M, Rafatullah M, Ghazali A, Sulaiman O, Hashim R, et al.
    Environ Sci Pollut Res Int, 2012 Jun;19(5):1464-84.
    PMID: 22207239 DOI: 10.1007/s11356-011-0709-8
    BACKGROUND: In tropical countries, the palm tree is one of the most abundant and important trees. Date palm is a principal fruit grown in many regions of the world. It is abundant, locally available and effective material that could be used as an adsorbent for the removal of different pollutants from aqueous solution.

    REVIEW: This article presents a review on the role of date palm as adsorbents in the removal of unwanted materials such as acid and basic dyes, heavy metals, and phenolic compounds. Many studies on adsorption properties of various low cost adsorbent, such as agricultural waste and activated carbons based on agricultural waste have been reported in recent years.

    CONCLUSION: Studies have shown that date palm-based adsorbents are the most promising adsorbents for removing unwanted materials. No previous review is available where researchers can get an overview of the adsorption capacities of date palm-based adsorbent used for the adsorption of different pollutants. This review provides the recent literature demonstrating the usefulness of date palm biomass-based adsorbents in the adsorption of various pollutants.

    Matched MeSH terms: Coloring Agents/isolation & purification
  4. Al-Alwani MAM, Ludin NA, Mohamad AB, Kadhum AAH, Mukhlus A
    Spectrochim Acta A Mol Biomol Spectrosc, 2018 Mar 05;192:487-498.
    PMID: 29133132 DOI: 10.1016/j.saa.2017.11.018
    The natural dyes anthocyanin and chlorophyll were extracted from Musa acuminata bracts and Alternanthera dentata leaves, respectively. The dyes were then applied as sensitizers in TiO2-based dye-sensitized solar cells (DSSCs). The ethanol extracts of the dyes had maximum absorbance. High dye yields were obtained under extraction temperatures of 70 to 80°C, and the optimal extraction temperature was approximately 80°C. Moreover, dye concentration sharply decreased under extraction temperatures that exceeded 80°C. High dye concentrations were obtained using acidic extraction solutions, particularly those with a pH value of 4. The DSSC fabricated with anthocyanin from M. acuminata bracts had a conversion efficiency of 0.31%, short-circuit current (Isc) of 0.9mA/cm2, open-circuit voltage (Voc) of 0.58V, and fill factor (FF) of 62.22%. The DSSC sensitized with chlorophyll from A. dentata leaves had a conversion efficiency of 0.13%, Isc of 0.4mA/cm-2,Voc of 0.54V, and FF of 67.5%. The DSSC sensitized with anthocyanin from M. acuminata bracts had a maximum incident photon-to-current conversion efficiency of 42%, which was higher than that of the DSSC sensitized with chlorophyll from A. dentata leaves (23%). Anthocyanin from M. acuminata bracts exhibited the best photosensitization effects.
    Matched MeSH terms: Coloring Agents/isolation & purification*
  5. Habiba U, Islam MS, Siddique TA, Afifi AM, Ang BC
    Carbohydr Polym, 2016 09 20;149:317-31.
    PMID: 27261756 DOI: 10.1016/j.carbpol.2016.04.127
    Chitosan/PVA/Na-titanate/TiO2 composite was synthesized by solution casting method. The composite was analyzed via Fourier Transform Infrared Spectroscopy, X-ray diffraction, Field Emission Scanning Electron Microscopy, Thermal gravimetric analysis and water stability test. Incorporation of Na-titanate shown decrease of crystallinity for chitosan but increase water stability. However, the composite structure was deteriorated with considerable weight loss in acidic medium. Two anionic dyes, methyl orange and congo red were used for the adsorption test. The adsorption behavior of the composites were described by pseudo-second-order kinetic model and Lagergren-first-order model for methyl orange and congo red, respectively. For methyl orange, adsorption was started with a promising decolorization rate. 99.9% of methyl orange dye was removed by the composite having higher weightage of chitosan and crystalline TiO2 phase. On the other hand, for the congo red the composite having higher chitosan and Na-titanate showed an efficient removal capacity of 95.76%. UV-vis results showed that the molecular backbone of methyl orange and congo red was almost destroyed when equilibrium was obtained, and the decolorization rate was reaching 100%. Kinetic study results showed that the photocatalytic degradation of methyl orange and congo red could be explained by Langmuir-Hinshelwood model. Thus, chitosan/PVA/Na-titanate/TiO2 possesses efficient adsorptivity and photocatalytic property for dye degradation.
    Matched MeSH terms: Coloring Agents/isolation & purification
  6. Hameed BH
    J Hazard Mater, 2009 Jul 15;166(1):233-8.
    PMID: 19111987 DOI: 10.1016/j.jhazmat.2008.11.019
    The aim of the present work was to investigate the feasibility of grass waste (GW) for methylene blue (MB) adsorption. The adsorption of MB on GW material was studied as a function of GW dose (0.05-1.20 g), solution pH 3-10, contact time and initial concentration (70-380 mg/L). The influence of these parameters on the adsorption capacity was studied using the batch process. The experimental data were analyzed by the Langmuir and Freundlich isotherms. The adsorption isotherm was found to follow the Langmuir model. The monolayer adsorption capacity was found to be 457.640 mg/g. The kinetic data were fitted to the pseudo-first-order and pseudo-second-order models, and were found to follow closely the pseudo-second-order kinetic model. The results revealed that GW adsorbent is potentially low-cost adsorbent for adsorption of MB.
    Matched MeSH terms: Coloring Agents/isolation & purification
  7. Hameed BH, Tan IA, Ahmad AL
    J Hazard Mater, 2008 Oct 30;158(2-3):324-32.
    PMID: 18329169 DOI: 10.1016/j.jhazmat.2008.01.088
    Oil palm fibre was used to prepare activated carbon using physiochemical activation method which consisted of potassium hydroxide (KOH) treatment and carbon dioxide (CO(2)) gasification. The effects of three preparation variables: the activation temperature, activation time and chemical impregnation (KOH:char) ratio on methylene blue (MB) uptake from aqueous solutions and activated carbon yield were investigated. Based on the central composite design (CCD), a quadratic model and a two factor interaction (2FI) model were respectively developed to correlate the preparation variables to the MB uptake and carbon yield. From the analysis of variance (ANOVA), the significant factors on each experimental design response were identified. The optimum activated carbon prepared from oil palm fibre was obtained by using activation temperature of 862 degrees C, activation time of 1h and chemical impregnation ratio of 3.1. The optimum activated carbon showed MB uptake of 203.83 mg/g and activated carbon yield of 16.50%. The equilibrium data for adsorption of MB on the optimum activated carbon were well represented by the Langmuir isotherm, giving maximum monolayer adsorption capacity as high as 400mg/g at 30 degrees C.
    Matched MeSH terms: Coloring Agents/isolation & purification*
  8. Hameed BH
    J Hazard Mater, 2009 Jan 30;161(2-3):753-9.
    PMID: 18499346 DOI: 10.1016/j.jhazmat.2008.04.019
    In the present study, spent tea leaves (STL) were used as a new non-conventional and low-cost adsorbent for the cationic dye (methylene blue) adsorption in a batch process at 30 degrees C. Equilibrium sorption isotherms and kinetics were investigated. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models of adsorption. The adsorption isotherm data were fitted well to the Langmuir isotherm and the monolayer adsorption capacity was found to be 300.052mg/g at 30 degrees C. The kinetic data obtained at different initial concentrations were analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion equations. The results revealed that the spent tea leaves, being waste, have the potential to be used as a low-cost adsorbent for the removal of methylene blue from aqueous solutions.
    Matched MeSH terms: Coloring Agents/isolation & purification*
  9. Hameed BH, Din AT, Ahmad AL
    J Hazard Mater, 2007 Mar 22;141(3):819-25.
    PMID: 16956720
    Bamboo, an abundant and inexpensive natural resource in Malaysia was used to prepare activated carbon by physiochemical activation with potassium hydroxide (KOH) and carbon dioxide (CO(2)) as the activating agents at 850 degrees C for 2h. The adsorption equilibrium and kinetics of methylene blue dye on such carbon were then examined at 30 degrees C. Adsorption isotherm of the methylene blue (MB) on the activated carbon was determined and correlated with common isotherm equations. The equilibrium data for methylene blue adsorption well fitted to the Langmuir equation, with maximum monolayer adsorption capacity of 454.2mg/g. Two simplified kinetic models including pseudo-first-order and pseudo-second-order equation were selected to follow the adsorption processes. The adsorption of methylene blue could be best described by the pseudo-second-order equation. The kinetic parameters of this best-fit model were calculated and discussed.
    Matched MeSH terms: Coloring Agents/isolation & purification*
  10. Hanafiah MA, Ngah WS, Zolkafly SH, Teong LC, Majid ZA
    J Environ Sci (China), 2012;24(2):261-8.
    PMID: 22655386
    The potential of base treated Shorea dasyphylla (BTSD) sawdust for Acid Blue 25 (AB 25) adsorption was investigated in a batch adsorption process. Various physiochemical parameters such as pH, stirring rate, dosage, concentration, contact time and temperature were studied. The adsorbent was characterized with Fourier transform infrared spectrophotometer, scanning electron microscope and Brunauer, Emmett and Teller analysis. The optimum conditions for AB 25 adsorption were pH 2, stirring rate 500 r/min, adsorbent dosage 0.10 g and contact time 60 min. The pseudo second-order model showed the best conformity to the kinetic data. The equilibrium adsorption of AB 25 was described by Freundlich and Langmuir, with the latter found to agree well with the isotherm model. The maximum monolayer adsorption capacity of BTSD was 24.39 mg/g at 300 K, estimated from the Langmuir model. Thermodynamic parameters such as Gibbs free energy, enthalpy and entropy were determined. It was found that AB 25 adsorption was spontaneous and exothermic.
    Matched MeSH terms: Coloring Agents/isolation & purification
  11. Harivaindaran KV, Rebecca OP, Chandran S
    Pak J Biol Sci, 2008 Sep 15;11(18):2259-63.
    PMID: 19137837
    The peel of Hylocereus polyrhizus is often regarded as a waste hence this study was aimed at exploring the feasibility of using the peel as a natural colorant using simple water extraction method. Samples were subjected to a series of temperatures: Room temperature (RT), 50, 80 and 100 degrees C; varied length of heating time from 1, 2, 3, 4, 5 and 10 min and a varied range of pH using 1 M of citric acid solution. The best condition to obtain highest betacyanin content was heating samples at 100 degrees C for 5 min in a pH 5 citric acid solution. The next part of this study involved the stability test of the pigments obtained through the best method determined earlier. The pigments were dried and resuspended in distilled water. The samples were then exposed to light to monitor pigment changes. Initial resuspension of the dried pigments yielded a comparable high content of betacyanins to its juice counterpart. The results showed that resuspended pigments had high pigment retention and were stable up to 7 days. These initial findings must be further studied in more controlled conditions to understand the stability of betacyanin. Nevertheless, the results show that betacyanin obtained from the peel of dragon fruit has a high potential to be used as a natural dye.
    Matched MeSH terms: Food Coloring Agents/isolation & purification
  12. Huong DTM, Liu BL, Chai WS, Show PL, Tsai SL, Chang YK
    Int J Biol Macromol, 2020 Dec 15;165(Pt A):1410-1421.
    PMID: 33045299 DOI: 10.1016/j.ijbiomac.2020.10.034
    Electrospinning technology was applied for the preparation of polyacrylonitrile (PAN) nanofiber membrane in this work. After hot pressing, alkaline hydrolysis and neutralization treatment, a weak acid cation exchange membrane (P-COOH) was prepared. By the covalent coupling reaction between the acidic membrane and aminomethane sulfonic acid (AMSA), a strong acidic nanofiber membrane (P-SO3H) was obtained. The surface morphology, chemical structure, and thermal stability of the prepared ion exchange membranes were analyzed via SEM, FTIR and TGA. Analytical results showed that the membranes were prepared successfully and thermally stable. The ion exchange membrane (IEX) was conducted with the newly designed membrane reactor, and different operating conditions affecting the adsorption efficiency of Toluidine Blue dye (TBO) were investigated by dynamic flow process. The results showed that dynamic binding capacity (DBC) of weak and strong IEX membranes for TBO dye was ~170 mg/g in a dynamic flow process. Simultaneously, the ion exchange membranes were also used for purifying lysozyme from chicken egg white (CEW). Results illustrated that the recovery yield and purification factor of lysozyme were 93.43% and 29.23 times (P-COOH); 90.72% and 36.22 times (P-SO3H), respectively. It was revealed that two type ion exchange membranes were very suitable as an adsorber for use in dye waste treatment and lysozyme purification process. P-SO3H strong ion-exchange membrane was more effective either removal of TBO dye or purification of lysozyme. The ion exchange membranes not only effectively purified lysozyme from CEW solution, but also effectively removed dye from wastewater.
    Matched MeSH terms: Coloring Agents/isolation & purification
  13. Jawad AH, Azharul Islam M, Hameed BH
    Int J Biol Macromol, 2017 Feb;95:743-749.
    PMID: 27914966 DOI: 10.1016/j.ijbiomac.2016.11.087
    Fabrication of an immobilized cross-linked chitosan-epichlorohydrine thin film (CLCETF) onto glass plate for adsorption of reactive orange 16 (RO16) dye was successfully studied using the direct casting technique. Adsorption experiments were performed as a function of contact time, initial dye concentration (25mg/L to 350mg/L), and pH (3-11). The adsorption isotherm followed the Langmuir model. The adsorption capacity of CLECTF for RO16 was 356.50mg/g at 27±2°C. The kinetics closely followed the pseudo-second-order model. Results supported the potential use of an immobilized CLECTF as effective adsorbent for the treatment of reactive dye without using filtration process.
    Matched MeSH terms: Coloring Agents/isolation & purification
  14. Jawad AH, Norrahma SSA, Hameed BH, Ismail K
    Int J Biol Macromol, 2019 Aug 15;135:569-581.
    PMID: 31150675 DOI: 10.1016/j.ijbiomac.2019.05.127
    In this work, chitosan (Chi) was cross-linked with glyoxal (Gly) and deposited onto glass plate to be a superior adsorbent film for two structurally different reactive orange 16 (RO-16) and methyl orange (MO) dyes by using non-conventional adsorption system without filtration process. The characterizations indicate that the cross-linked chitosan-glyoxal (Chi-Gly) film has a low swelling index, high adherence strength on glass plate, amine group (NH2) content was 32.52%, and pHpzc of ∼6.0 indicating a negative surface charge occurs above pHpzc. The adsorption isotherm data of RO-16 and MO by Chi-Gly film were in agreement with Langmuir isotherm, with maximum adsorption capacities of 1554.3 mg/g and 1451.9 mg/g, respectively. The pseudo-first-order kinetic model best described the kinetic data. The adsorption process was spontaneous and exothermic in nature at Chi-Gly film thickness of 8.55 μm, and pH ~3. The mechanism of adsorption included mainly electrostatic attractions, dipole-dipole hydrogen bonding interactions, n-π stacking attractions, and Yoshida H-bonding. This study reveals that immobilized Chi-Gly film as a good candidate for adsorption of reactive and acid dyes as it does not require any filtration process and adsorbent recovery during and post-adsorption process.
    Matched MeSH terms: Coloring Agents/isolation & purification
  15. Khasri A, Ahmad MA
    Environ Sci Pollut Res Int, 2018 Nov;25(31):31508-31519.
    PMID: 30203351 DOI: 10.1007/s11356-018-3046-3
    The adsorption behavior of basic, methylene blue (MB), and reactive, remazol brilliant violet 5R (RBV), dyes from aqueous solution onto Intsia bijuga sawdust-based activated carbon (IBSAC) was executed via batch and column studies. The produced activated carbon was characterized through Brunauer-Emmett-Teller (BET) surface area and pore structural analysis, proximate and ultimate, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). Batch studies were performed to investigate the effects of contact time, initial concentration, and solution pH. The equilibrium data for both MB and RBV adsorption better fits Langmuir model with maximum adsorption capacity of 434.78 and 212.77 mg/g, respectively. Kinetic studies for both MB and RBV dyes showed that the adsorption process followed a pseudo-second-order and intraparticle diffusion kinetic models. For column mode, the breakthrough curves were plotted by varying the flow rate, bed height, and initial concentration and the breakthrough data were best correlated with the Yoon-Nelson model compared to Thomas and Adams-Bohart model. The adsorption activity of IBSAC shows good stability even after four consecutive cycles.
    Matched MeSH terms: Coloring Agents/isolation & purification*
  16. Lee SL, Ho LN, Ong SA, Wong YS, Voon CH, Khalik WF, et al.
    Chemosphere, 2017 Jan;166:118-125.
    PMID: 27693872 DOI: 10.1016/j.chemosphere.2016.09.082
    Photocatalytic fuel cell (PFC) is a potential wastewater treatment technology that can generate electricity from the conversion of chemical energy of organic pollutants. An immobilized ZnO/Zn fabricated by sonication and heat attachment method was applied as the photoanode and Pt/C plate was used as the cathode of the PFC in this study. Factors that affect the decolorization efficiency and electricity generation of the PFC such as different initial dye concentrations and pH were investigated. Results revealed that the degradation of Reactive Green 19 (RG19) was enhanced in a closed circuit PFC compared with that of a opened circuit PFC. Almost 100% decolorization could be achieved in 8 h when 250 mL of 30 mg L(-1) of RG19 was treated in a PFC without any supporting electrolyte. The highest short circuit current of 0.0427 mA cm(-2) and maximum power density of 0.0102 mW cm(-2) was obtained by PFC using 30 mg L(-1) of RG19. The correlation between dye degradation, conductivity and voltage output were also investigated and discussed.
    Matched MeSH terms: Coloring Agents/isolation & purification
  17. Liew RK, Azwar E, Yek PNY, Lim XY, Cheng CK, Ng JH, et al.
    Bioresour Technol, 2018 Oct;266:1-10.
    PMID: 29936405 DOI: 10.1016/j.biortech.2018.06.051
    A micro-mesoporous activated carbon (AC) was produced via an innovative approach combining microwave pyrolysis and chemical activation using NaOH/KOH mixture. The pyrolysis was examined over different chemical impregnation ratio, microwave power, microwave irradiation time and types of activating agents for the yield, chemical composition, and porous characteristic of the AC obtained. The AC was then tested for its feasibility as textile dye adsorbent. About 29 wt% yield of AC was obtained from the banana peel with low ash and moisture (<5 wt%), and showed a micro-mesoporous structure with high BET surface area (≤1038 m2/g) and pore volume (≤0.80 cm3/g), indicating that it can be utilized as adsorbent to remove dye. Up to 90% adsorption of malachite green dye was achieved by the AC. Our results indicate that the microwave-activation approach represents a promising attempt to produce good quality AC for dye adsorption.
    Matched MeSH terms: Coloring Agents/isolation & purification
  18. Low KS, Lee CK, Koo WH
    Bull Environ Contam Toxicol, 1999 Apr;62(4):428-33.
    PMID: 10094725
    Matched MeSH terms: Coloring Agents/isolation & purification
  19. Malek NNA, Jawad AH, Abdulhameed AS, Ismail K, Hameed BH
    Int J Biol Macromol, 2020 Mar 01;146:530-539.
    PMID: 31917215 DOI: 10.1016/j.ijbiomac.2020.01.020
    In this study, a new magnetic Schiff's base-chitosan-glyoxal/fly ash/Fe3O4 biocomposite (Chi-Gly/FA/Fe3O4) was successfully synthesized by direct compositing of magnetic chitosan (Chi) with fly ash (FA) powder particles, and followed by Schiff's base formation via cross-linking reaction with glyoxal (Gly). Various techniques such as BET, XRD, FTIR, and SEM-EDX were utilized to characterize of Chi-Gly/FA/Fe3O4 biocomposite. The effectiveness of Chi-Gly/FA/Fe3O4 as an adsorbent was evaluated for the removal anionic azo dye such as reactive orange 16 (RO16) from aqueous environment. The effect of adsorption process parameters namely adsorbent dose (A: 0.02-0.1 g), solution pH (B: 4-10), temperature (C: 30-50 °C), and contact time (D: 5-20 min) were optimized via Box-Behnken design (BBD) in response surface methodology (RSM). The adsorption process followed the pseudo-second order (PSO) kinetic, and Freundlich isotherm models. The maximum adsorption capacity of Chi-Gly/FA/Fe3O4 biocomposite for RO16 dye was recorded to be 112.5 mg/g at 40 °C. The RO16 dye adsorption mechanism was attributed to various interactions such as electrostatic, n-π, H-bonding, and Yoshida H-bonding. Furthermore, the Chi-Gly/FA/Fe3O4 biocomposite exhibited a high ability to separate from the aqueous solution after adsorption process by external magnetic field.
    Matched MeSH terms: Coloring Agents/isolation & purification*
  20. Malek NNA, Jawad AH, Ismail K, Razuan R, ALOthman ZA
    Int J Biol Macromol, 2021 Oct 31;189:464-476.
    PMID: 34450144 DOI: 10.1016/j.ijbiomac.2021.08.160
    A magnetic biocomposite blend of chitosan-polyvinyl alcohol/fly ash (m-Cs-PVA/FA) was developed by adding fly ash (FA) microparticles into the polymeric matrix of magnetic chitosan-polyvinyl alcohol (m-Cs-PVA). The effectiveness of m-Cs-PVA/FA as an adsorbent to remove textile dye (reactive orange 16, RO16) from aquatic environment was evaluated. The optimum adsorption key parameters and their significant interactions were determined by Box-Behnken Design (BBD). The analysis of variance (ANOVA) indicates the significant interactions can be observed between m-Cs-PVA/FA dose with solution pH, and m-Cs-PVA/FA dose with working temperature. Considering these significant interactions, the highest removal of RO16 (%) was found 90.3% at m-Cs-PVA/FA dose (0.06 g), solution pH (4), working temperature (30 °C), and contact time (17.5 min). The results of adsorption kinetics revealed that the RO16 adsorption was better described by the pseudo-second-order model. The results of adsorption isotherm indicated a multilayer adsorption process as well described by Freundlich model with maximum adsorption capacity of 123.8 mg/g at 30 °C. An external magnetic field can be easily applied to recover the adsorbent (m-Cs-PVA/FA). The results supported that the synthesized m-Cs-PVA/FA presents itself as an effective and promising adsorbent for textile dye with preferable adsorption capacity and separation ability during and after the adsorption process.
    Matched MeSH terms: Coloring Agents/isolation & purification*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links