Displaying publications 1 - 20 of 65 in total

Abstract:
Sort:
  1. Nurfadhlina M, Foong K, Teh LK, Tan SC, Mohd Zaki S, Ismail R
    Xenobiotica, 2006 Aug;36(8):684-92.
    PMID: 16891249
    The genetically polymorphic cytochrome P450 (CYP) 2A6 is the major nicotine-oxidase in humans that may contribute to nicotine dependence and cancer susceptibility. The authors investigated the types and frequencies of CYP2A6 alleles in the three major ethnic groups in Malaysia and CYP2A6*1A, CYP2A6*1B, CYP2A6*1x2, CYP2A6*2, CYP2A6*3, CYP2A6*4, CYP2A6*5, CYP2A6*7, CYP2A6*8 and CYP2A6*10 were determined by allele-specific polymerase chain reaction (PCR) in 270 Malays, 172 Chinese and 174 Indians. Except for CYP2A6*2 and *3 that were not detected in the Malays and Chinese, all the other alleles were detected. Frequencies for the CYP2A6*4 allele were 7, 5 and 2%, respectively, in Malays, Chinese and Indians. A statistically significant high frequency of the duplicated CYP2A6*1x2 allele occurred among Chinese. Among Malays and Chinese, the most common allele was CYP2A6*1B, but it was CYP2A6*1A among Indians. These ethnic difference in frequencies suggested that further studies are required to investigate the implications on diseases such as cancer and smoking behaviour among these major ethnic groups in Malaysia.
    Matched MeSH terms: Cytochrome P-450 Enzyme System/genetics*
  2. Pan Y, Ong CE, Pung YF, Chieng JY
    Xenobiotica, 2019 Jul;49(7):863-876.
    PMID: 30028220 DOI: 10.1080/00498254.2018.1503360
    Nanoparticles (NPs) have wide spectrum applications in the areas of industry and biomedicine. However, concerns about their toxic and negative impacts on the environments as well as human health have been raised. Cytochrome P450s (CYPs) are involved in endogenous and exogenous metabolism. Modulations of CYP can adversely damage drug metabolism, detoxification of xenobiotics and animal physiology functions. This article focused on NPs-CYP interactions for humans and animals available in the literature. It was found that different NPs process specific inhibitory potencies against CYPs involved in drug metabolism. Moreover, NPs were able to modify the expression of CYPs genes or protein in humans and other animals, which highlighted their detoxification functions. Nonetheless, changes of CYPs responsible for hormone synthesis and metabolism resulted in endocrine disturbances. Hence, there is a need to screen newly developed NPs to evaluate their interactions with CYPs. The future studies should further strategize the in vitro approaches to reveal the molecular mechanisms behind interactions by taking full considerations of the interference of co-factors, buffers, substrates and metabolites with NPs. Moreover, in vivo studies should compare the influences of NPs via different administration routes and different duration of treatments to reveal the physiological significance.
    Matched MeSH terms: Cytochrome P-450 Enzyme System
  3. Hasiah AH, Elsheikh HA, Abdullah AS, Khairi HM, Rajion MA
    Vet J, 2000 Nov;160(3):267-72.
    PMID: 11061964
    The effect of phenobarbitone against signal grass (Brachiaria decumbens) toxicity was studied in 26 male crossbred sheep. Grazing on signal grass significantly decreased the concentration of cytochrome P-450 and the activity of drug metabolizing enzymes, viz. aminopyrine-N-demethylase, aniline-4-hydroxylase, UDP- glucuronyltransferase and glutathione-S-transferase in liver and kidneys of affected sheep.Oral administration of phenobarbitone (30 mg/kg body weight) for five consecutive days before grazing on B. decumbens pasture, and thereafter, for three consecutive days every two weeks, resulted in significant increases in hepatic and renal activities of drug-metabolizing enzymes. The induction of drug metabolizing activity in sheep grazing on signal grass group was found to be lower than in animals given phenobarbitone alone. Induction by phenobarbitone provided a degree of protection against the toxic effects of B. decumbens as indicated by the delay in the appearance of signs of toxicity. Furthermore, these were much milder compared to those in the sheep not treated with phenobarbitone. The present study suggests that phenobarbitone-type cytochrome P-450 isoenzyme-induction may increase resistance against signal grass (B. decumbens) toxicity in sheep.
    Matched MeSH terms: Cytochrome P-450 Enzyme System/biosynthesis
  4. Haisah AH, Elsheikh HA, Khairi HM, Salam Abdullah A, Rajion MA
    Vet Hum Toxicol, 2003 Mar;45(2):68-71.
    PMID: 12678289
    The effect of griseofulvin treatment on signal grass (Brachlaria decumbens) toxicity was studied in 27 male Wiltshire Indigenous Malaysian crossbred sheep. Grazing on signal grass generally decreased the activity of the drug metabolizing enzymes in livers and kidneys. Griseofulvin oral administration of 5 mg/kg body weight for 5 consecutive days every other week for 10 w increased the hepatic concentration of cytochrome P-450 and the activity of phase II drug metabolizing enzymes (UDP-glucuronyltransferase and glutathione-S-transferase) while it decreased the hepatic and increased the renal activity of phase I enzymes aminopyrine-N-demethylase and aniline-4-hydroxylase. Griseofulvin did not protect sheep against B decumbens toxicity as 5/7 animals treated with griseofulvin and grazed on B decumbens showed signs of the plant toxicity.
    Matched MeSH terms: Cytochrome P-450 Enzyme System/pharmacology
  5. Wang XY, Lim-Jurado M, Prepageran N, Tantilipikorn P, Wang de Y
    Ther Clin Risk Manag, 2016;12:585-97.
    PMID: 27110120 DOI: 10.2147/TCRM.S105189
    Allergic rhinitis and urticaria are common allergic diseases that may have a major negative impact on patients' quality of life. Bilastine, a novel new-generation antihistamine that is highly selective for the H1 histamine receptor, has a rapid onset and prolonged duration of action. This agent does not interact with the cytochrome P450 system and does not undergo significant metabolism in humans, suggesting that it has very low potential for drug-drug interactions, and does not require dose adjustment in renal impairment. As bilastine is not metabolized and is excreted largely unchanged, hepatic impairment is not expected to increase systemic exposure above the drug's safety margin. Bilastine has demonstrated similar efficacy to cetirizine and desloratadine in patients with seasonal allergic rhinitis and, in a Vienna Chamber study, a potentially longer duration of action than fexofenadine in patients with asymptomatic seasonal allergic rhinitis. It has also shown significant efficacy (similar to that of cetirizine) and safety in the long-term treatment of perennial allergic rhinitis. Bilastine showed similar efficacy to levocetirizine in patients with chronic spontaneous urticaria and can be safely used at doses of up to fourfold higher than standard dosage (80 mg once daily). The fourfold higher than standard dose is specified as an acceptable second-line treatment option for urticaria in international guidelines. Bilastine is generally well tolerated, both at standard and at supratherapeutic doses, appears to have less sedative potential than other second-generation antihistamines, and has no cardiotoxicity. Based on its pharmacokinetic properties, efficacy, and tolerability profile, bilastine will be valuable in the management of allergic rhinitis and urticaria.
    Matched MeSH terms: Cytochrome P-450 Enzyme System
  6. Ang SS, Salleh AB, Chor LT, Normi YM, Tejo BA, Rahman MBA, et al.
    Protein J, 2018 04;37(2):180-193.
    PMID: 29508210 DOI: 10.1007/s10930-018-9764-z
    The bioconversion of vitamin D3 catalyzed by cytochrome P450 (CYP) requires 25-hydroxylation and subsequent 1α-hydroxylation to produce the hormonal activated 1α,25-dihydroxyvitamin D3. Vitamin D3 25-hydroxylase catalyses the first step in the vitamin D3 biosynthetic pathway, essential in the de novo activation of vitamin D3. A CYP known as CYP107CB2 has been identified as a novel vitamin D hydroxylase in Bacillus lehensis G1. In order to deepen the understanding of this bacterial origin CYP107CB2, its detailed biological functions as well as biochemical characteristics were defined. CYP107CB2 was characterized through the absorption spectral analysis and accordingly, the enzyme was assayed for vitamin D3 hydroxylation activity. CYP-ligand characterization and catalysis optimization were conducted to increase the turnover of hydroxylated products in an NADPH-regenerating system. Results revealed that the over-expressed CYP107CB2 protein was dominantly cytosolic and the purified fraction showed a protein band at approximately 62 kDa on SDS-PAGE, indicative of CYP107CB2. Spectral analysis indicated that CYP107CB2 protein was properly folded and it was in the active form to catalyze vitamin D3 reaction at C25. HPLC and MS analysis from a reconstituted enzymatic reaction confirmed the hydroxylated products were 25-hydroxyitamin D3 and 1α,25-dihydroxyvitamin D3 when the substrates vitamin D3 and 1α-hydroxyvitamin D3 were used. Biochemical characterization shows that CYP107CB2 performed hydroxylation activity at 25 °C in pH 8 and successfully increased the production of 1α,25-dihydroxyvitamin D3 up to four fold. These findings show that CYP107CB2 has a biologically relevant vitamin D3 25-hydroxylase activity and further suggest the contribution of CYP family to the metabolism of vitamin D3.
    Matched MeSH terms: Cytochrome P-450 Enzyme System/genetics; Cytochrome P-450 Enzyme System/metabolism; Cytochrome P-450 Enzyme System/chemistry*
  7. Avicor SW, Wajidi MF, El-Garj FM, Jaal Z, Yahaya ZS
    Protein J, 2014 Oct;33(5):457-64.
    PMID: 25199940 DOI: 10.1007/s10930-014-9580-z
    Mosquito coils are insecticides commonly used for protection against mosquitoes due to their toxic effects on mosquito populations. These effects on mosquitoes could induce the expression of metabolic enzymes in exposed populations as a counteractive measure. Cytochrome P450 family 4 (CYP4) are metabolic enzymes associated with a wide range of biological activities including insecticide resistance. In this study, the efficacies of three commercial mosquito coils with different pyrethroid active ingredients were assessed and their potential to induce the expression of CYP4 genes in Aedes albopictus analyzed by real-time quantitative PCR. Coils containing 0.3 % D-allethrin and 0.005 % metofluthrin exacted profound toxic effects on Ae. albopictus, inducing high mortalities (≥90 %) compared to the 0.2 % D-allethrin reference coil. CYP4H42 and CYP4H43 expressions were significantly higher in 0.3 % D-allethrin treated mosquitoes compared to the other treated populations. Short-term (KT50) exposure to mosquito coils induced significantly higher expression of both genes in 0.005 % metofluthrin exposed mosquitoes. These results suggest the evaluated products provided better protection than the reference coil; however, they also induced the expression of metabolic genes which could impact negatively on personal protection against mosquito.
    Matched MeSH terms: Cytochrome P-450 Enzyme System/genetics; Cytochrome P-450 Enzyme System/metabolism*
  8. Chan SL, Suo C, Lee SC, Goh BC, Chia KS, Teo YY
    Pharmacogenomics J, 2012 Aug;12(4):312-8.
    PMID: 21383771 DOI: 10.1038/tpj.2011.7
    Genetic markers displaying highly significant statistical associations with complex phenotypes may not necessarily possess sufficient clinical validity to be useful. Understanding the contribution of these markers beyond readily available clinical biomarkers is particularly important in pharmacogenetics. We demonstrate the utility of genetic testing using the example of warfarin in a multi-ethnic setting comprising of three Asian populations that are broadly representative of the genetic diversity for half of the population in the world, especially as distinct interethnic differences in warfarin dose requirements have been previously established. We confirmed the roles of three well-established loci (CYP2C9, VKORC1 and CYP4F2) in explaining warfarin dosage variation in the three Asian populations. In addition, we assessed the relationship between ethnicity and the genotypes of these loci, observing strong correlations at VKORC1 and CYP4F2. Subsequently, we established the additional utility of these genetic factors in predicting warfarin dose beyond ethnicity and clinical biomarkers through performing a series of systematic cross-validation analyses of the relative predictive accuracies of various fixed-dose regimen, clinical and genetic models. Through a pharmacogenetics model for warfarin, we show the importance of genetic testing beyond readily available clinical biomarkers in predicting dose requirements, confirming the role of genetic profiling in personalized medicine.
    Matched MeSH terms: Cytochrome P-450 Enzyme System/genetics*
  9. Hor SY, Lee SC, Wong CI, Lim YW, Lim RC, Wang LZ, et al.
    Pharmacogenomics J, 2008 Apr;8(2):139-46.
    PMID: 17876342
    Previously studied candidate genes have failed to account for inter-individual variability of docetaxel and doxorubicin disposition and effects. We genotyped the transcriptional regulators of CYP3A and ABCB1 in 101 breast cancer patients from 3 Asian ethnic groups, that is, Chinese, Malays and Indians, in correlation with the pharmacokinetics and pharmacodynamics of docetaxel and doxorubicin. While there was no ethnic difference in docetaxel and doxorubicin pharmacokinetics, ethnic difference in docetaxel- (ANOVA, P=0.001) and doxorubicin-induced (ANOVA, P=0.003) leukocyte suppression was observed, with Chinese and Indians experiencing greater degree of docetaxel-induced myelosuppression than Malays (Bonferroni, P=0.002, P=0.042), and Chinese experiencing greater degree of doxorubicin-induced myelosuppression than Malays and Indians (post hoc Bonferroni, P=0.024 and 0.025). Genotyping revealed both PXR and CAR to be well conserved; only a PXR 5'-untranslated region polymorphism (-24381A>C) and a silent CAR variant (Pro180Pro) were found at allele frequencies of 26 and 53%, respectively. Two non-synonymous variants were identified in HNF4alpha (Met49Val and Thr130Ile) at allele frequencies of 55 and 1%, respectively, with the Met49Val variant associated with slower neutrophil recovery in docetaxel-treated patients (ANOVA, P=0.046). Interactions were observed between HNF4alpha Met49Val and CAR Pro180Pro, with patients who were wild type for both variants experiencing least docetaxel-induced neutropenia (ANOVA, P=0.030). No other significant genotypic associations with pharmacokinetics or pharmacodynamics of either drug were found. The PXR-24381A>C variants were significantly more common in Indians compared to Chinese or Malays (32/18/21%, P=0.035) Inter-individual and inter-ethnic variations of docetaxel and doxorubicin pharmacokinetics or pharmacodynamics exist, but genotypic variability of the transcriptional regulators PAR, CAR and HNF4alpha cannot account for this variability.
    Matched MeSH terms: Cytochrome P-450 Enzyme System/genetics; Cytochrome P-450 Enzyme System/metabolism
  10. Safiah Mokhtar S, M Vanhoutte P, W S Leung S, Imran Yusof M, Wan Sulaiman WA, Zaharil Mat Saad A, et al.
    Tohoku J. Exp. Med., 2013 11;231(3):217-22.
    PMID: 24225501
    Diabetic endothelial dysfunction is characterized by impaired endothelium-dependent relaxation. In this study, we measured the expression of endothelial nitric oxide synthase (eNOS), cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), prostacyclin synthase (PGIS), and prostacyclin receptor (IP) in subcutaneous arteries of type-2 diabetic and non-diabetic patients. Subcutaneous arteries were dissected from tissues from seven diabetics (4 males and 3 females) and seven non-diabetics (5 males and 2 females) aged between 18 to 65 years, who underwent lower limb surgical procedures. Diabetics had higher fasting blood glucose compared to non-diabetics, but there were no differences in blood pressure, body mass index and age. Patients were excluded if they had uncontrolled hypertension, previous myocardial infarction, coronary heart disease, renal or hepatic failure and tumor. The relative expression levels of eNOS, COX-1, COX-2, PGIS and IP receptor were determined by Western blotting analysis, normalized with the β-actin level. Increased expression of COX-2 was observed in subcutaneous arteries of diabetics compared to non-diabetics, whereas the expression levels of eNOS and PGIS were significantly lower in diabetics. There were no significant differences in expression levels of COX-1 and IP receptor between the two groups. Immunohistochemical study of subcutaneous arteries showed that the intensities of eNOS and PGIS staining were lower in diabetics, with higher COX-2 staining. In conclusion, type-2 diabetes is associated with higher COX-2 expression, but lower eNOS and PGIS expression in subcutaneous arteries. These alterations may lead to impaired endothelium-dependent vasodilatation, and thus these proteins may be potential targets for protection against the microvascular complications of diabetes.
    Matched MeSH terms: Cytochrome P-450 Enzyme System/metabolism*
  11. Heskes AM, Sundram TCM, Boughton BA, Jensen NB, Hansen NL, Crocoll C, et al.
    Plant J, 2018 03;93(5):943-958.
    PMID: 29315936 DOI: 10.1111/tpj.13822
    Vitex agnus-castus L. (Lamiaceae) is a medicinal plant historically used throughout the Mediterranean region to treat menstrual cycle disorders, and is still used today as a clinically effective treatment for premenstrual syndrome. The pharmaceutical activity of the plant extract is linked to its ability to lower prolactin levels. This feature has been attributed to the presence of dopaminergic diterpenoids that can bind to dopamine receptors in the pituitary gland. Phytochemical analyses of V. agnus-castus show that it contains an enormous array of structurally related diterpenoids and, as such, holds potential as a rich source of new dopaminergic drugs. The present work investigated the localisation and biosynthesis of diterpenoids in V. agnus-castus. With the assistance of matrix-assisted laser desorption ionisation-mass spectrometry imaging (MALDI-MSI), diterpenoids were localised to trichomes on the surface of fruit and leaves. Analysis of a trichome-specific transcriptome database, coupled with expression studies, identified seven candidate genes involved in diterpenoid biosynthesis: three class II diterpene synthases (diTPSs); three class I diTPSs; and a cytochrome P450 (CYP). Combinatorial assays of the diTPSs resulted in the formation of a range of different diterpenes that can account for several of the backbones of bioactive diterpenoids observed in V. agnus-castus. The identified CYP, VacCYP76BK1, was found to catalyse 16-hydroxylation of the diol-diterpene, peregrinol, to labd-13Z-ene-9,15,16-triol when expressed in Saccharomyces cerevisiae. Notably, this product is a potential intermediate in the biosynthetic pathway towards bioactive furan- and lactone-containing diterpenoids that are present in this species.
    Matched MeSH terms: Cytochrome P-450 Enzyme System/genetics; Cytochrome P-450 Enzyme System/metabolism
  12. Sun Q, Yang J, Zhang M, Zhang Y, Ma H, Tran NT, et al.
    J Biol Chem, 2023 Dec;299(12):105463.
    PMID: 37977221 DOI: 10.1016/j.jbc.2023.105463
    Ferroptosis, characterized by iron-dependent cell death, has recently emerged as a critical defense mechanism against microbial infections. The present study aims to investigate the involvement of exosomes in the induction of ferroptosis and the inhibition of bacterial infection in crustaceans. Our findings provide compelling evidence for the pivotal role of exosomes in the immune response of crustaceans, wherein they facilitate intracellular iron accumulation and activate the ferroptotic pathways. Using RNA-seq and bioinformatic analysis, we demonstrate that cytochrome P450 (CYP) can effectively trigger ferroptosis. Moreover, by conducting an analysis of exosome cargo proteins, we have identified the participation of six-transmembrane epithelial antigen of prostate 4 in the regulation of hemocyte ferroptotic sensitivity. Subsequent functional investigations unveil that six-transmembrane epithelial antigen of prostate 4 enhances cellular Fe2+ levels, thereby triggering Fenton reactions and accelerating CYP-mediated lipid peroxidation, ultimately culminating in ferroptotic cell death. Additionally, the Fe2+-dependent CYP catalyzes the conversion of arachidonic acid into 20-hydroxyeicosatetraenoic acid, which activates the peroxisome proliferator-activated receptor. Consequently, the downstream target of peroxisome proliferator-activated receptor, cluster of differentiation 36, promotes intracellular fatty acid accumulation, lipid peroxidation, and ferroptosis. These significant findings shed light on the immune defense mechanisms employed by crustaceans and provide potential strategies for combating bacterial infections in this species.
    Matched MeSH terms: Cytochrome P-450 Enzyme System/metabolism
  13. Ramzi NH, Chahil JK, Lye SH, Munretnam K, Sahadevappa KI, Velapasamy S, et al.
    Indian J Med Res, 2014 Jun;139(6):873-82.
    PMID: 25109722
    Colorectal cancer (CRC) is second only to breast cancer as the leading cause of cancer-related deaths in Malaysia. In the Asia-Pacific area, it is the highest emerging gastrointestinal cancer. The aim of this study was to identify single nucleotide polymorphisms (SNPs) and environmental factors associated with CRC risk in Malaysia from a panel of cancer associated SNPs.
    Matched MeSH terms: Cytochrome P-450 Enzyme System/genetics*
  14. Muhammad Naeem-ul-Hassan, Zamri Zainal, Ismanizan Ismail, Nur Athirah Abd Hamid, Muhammad Sajad
    Sains Malaysiana, 2018;47:3003-3008.
    F-box proteins containing variable C-terminal domains make an essential part of SKP1-Cullin-Ring box-F box (SCF)
    complex. SCF complex catalyzes the final step to link the ubiquitin tag with the target protein, destined for degradation,
    through F-box protein that confer overall substrate specificity to the complex. In this study, we analyzed the role of
    At2g02870, a Kelch containing F-box protein from Arabidopsis thaliana, by using reverse genetics strategy. At2g02870
    loss of function mutant lines (at2g02870) were analyzed and compared with wild type plants for the expression of genes
    and products of hydroperoxide lyase (HPL) branch of oxylipin pathway. We found that the at2g02870 plants have enhanced
    expression of HPL pathway genes and produce more green leaf volatiles (GLV) than the wild type plants. Our results
    suggested that the gene is involved in the regulation of HPL pathway, possibly through the degradation of enzymes or/
    and the regulatory factors of the pathway.
    Matched MeSH terms: Cytochrome P-450 Enzyme System
  15. Rasool S, Mohamed R
    Protoplasma, 2016 Sep;253(5):1197-209.
    PMID: 26364028 DOI: 10.1007/s00709-015-0884-4
    Cytochrome P450s constitute the largest family of enzymatic proteins in plants acting on various endogenous and xenobiotic molecules. They are monooxygenases that insert one oxygen atom into inert hydrophobic molecules to make them more reactive and hydro-soluble. Besides for physiological functions, the extremely versatile cytochrome P450 biocatalysts are highly demanded in the fields of biotechnology, medicine, and phytoremediation. The nature of reactions catalyzed by P450s is irreversible, which makes these enzymes attractions in the evolution of plant metabolic pathways. P450s are prime targets in metabolic engineering approaches for improving plant defense against insects and pathogens and for production of secondary metabolites such as the anti-neoplastic drugs taxol or indole alkaloids. The emerging examples of P450 involvement in natural product synthesis in traditional medicinal plant species are becoming increasingly interesting, as they provide new alternatives to modern medicines. In view of the divergent roles of P450s, we review their classification and nomenclature, functions and evolution, role in biosynthesis of secondary metabolites, and use as tools in pharmacology.
    Matched MeSH terms: Cytochrome P-450 Enzyme System/classification*; Cytochrome P-450 Enzyme System/metabolism*
  16. Latif IK, Karim AJ, Zuki AB, Zamri-Saad M, Niu JP, Noordin MM
    Poult Sci, 2010 Jul;89(7):1379-88.
    PMID: 20548065 DOI: 10.3382/ps.2009-00622
    Aftermath in several air pollution episodes with high concentrations of polycyclic aromatic hydrocarbons did not significantly affect health and performance of broilers despite its renowned sensitivity to polycyclic aromatic hydrocarbons. The aim of the study was to elucidate the previous lack of response in birds exposed to such severe episodes of air pollution. Benzo[a]pyrene (BaP) was used to simulate the influence of air pollution on hematology, selected organ function, and oxidative stress in broilers. One-day-old chicks were assigned to 5 equal groups composed of a control group, tricaprylin group, and 3 groups treated with BaP (at 1.5 microg, 150 microg, or 15 mg/kg of BW). The BaP was intratracheally administered to 1-d-old chicks for 5 consecutive days. The hematology, liver and kidney function, P450 activity, and malondialdehyde level especially in the group receiving 15 mg of BaP/kg of BW demonstrated evidence of hemato- and hepatoxicity via BaP-induced oxidative stress. The deleterious effect of exposure to high concentration of BaP in broiler chickens was probably due to the anatomy of this species and the half-life of BaP. Although the effect of BaP may be transient or irreversible, pathogen challenges faced during the period of suppression may prove fatal.
    Matched MeSH terms: Cytochrome P-450 Enzyme System/metabolism
  17. Goh LL, Lim CW, Sim WC, Toh LX, Leong KP
    PLoS One, 2017;12(1):e0169233.
    PMID: 28046094 DOI: 10.1371/journal.pone.0169233
    BACKGROUND: Genetic determinants of drug response remain stable throughout life and offer great promise to patient-tailored drug therapy. The adoption of pharmacogenetic (PGx) testing in patient care requires accurate, cost effective and rapid genotyping with clear guidance on the use of the results. Hence, we evaluated a 32 SNPs panel for implementing PGx testing in clinical laboratories.

    METHODS: We designed a 32-SNP panel for PGx testing in clinical laboratories. The variants were selected using the clinical annotations of the Pharmacogenomics Knowledgebase (PharmGKB) and include polymorphisms of CYP2C9, CYP2C19, CYP2D6, CYP3A5 and VKORC1 genes. The CYP2D6 gene allele quantification was determined simultaneously with TaqMan copy number assays targeting intron 2 and exon 9 regions. The genotyping results showed high call rate accuracy according to concordance with genotypes identified by independent analyses on Sequenome massarray and droplet digital PCR. Furthermore, 506 genomic samples across three major ethnic groups of Singapore (Malay, Indian and Chinese) were analysed on our workflow.

    RESULTS: We found that 98% of our study subjects carry one or more CPIC actionable variants. The major alleles detected include CYP2C9*3, CYP2C19*2, CYP2D6*10, CYP2D6*36, CYP2D6*41, CYP3A5*3 and VKORC1*2. These translate into a high percentage of intermediate (IM) and poor metabolizer (PM) phenotypes for these genes in our population.

    CONCLUSION: Genotyping may be useful to identify patients who are prone to drug toxicity with standard doses of drug therapy in our population. The simplicity and robustness of this PGx panel is highly suitable for use in a clinical laboratory.

    Matched MeSH terms: Cytochrome P-450 Enzyme System/genetics*
  18. Ahmad M, Suhaimi SN, Chu TL, Abdul Aziz N, Mohd Kornain NK, Samiulla DS, et al.
    PLoS One, 2018;13(1):e0191295.
    PMID: 29329342 DOI: 10.1371/journal.pone.0191295
    Copper(II) ternary complex, [Cu(phen)(C-dmg)(H2O)]NO3 was evaluated against a panel of cell lines, tested for in vivo efficacy in nasopharyngeal carcinoma xenograft models as well as for toxicity in NOD scid gamma mice. The Cu(II) complex displayed broad spectrum cytotoxicity against multiple cancer types, including lung, colon, central nervous system, melanoma, ovarian, and prostate cancer cell lines in the NCI-60 panel. The Cu(II) complex did not cause significant induction of cytochrome P450 (CYP) 3A and 1A enzymes but moderately inhibited CYP isoforms 1A2, 2C9, 2C19, 2D6, 2B6, 2C8 and 3A4. The complex significantly inhibited tumor growth in nasopharyngeal carcinoma xenograft bearing mice models at doses which were well tolerated without causing significant or permanent toxic side effects. However, higher doses which resulted in better inhibition of tumor growth also resulted in toxicity.
    Matched MeSH terms: Cytochrome P-450 Enzyme System/biosynthesis; Cytochrome P-450 Enzyme System/metabolism
  19. Ang GY, Yu CY, Subramaniam V, Abdul Khalid MI, Tuan Abdu Aziz TA, Johari James R, et al.
    PLoS One, 2016;11(10):e0164169.
    PMID: 27798644 DOI: 10.1371/journal.pone.0164169
    The human cytochrome P450 (CYP) is a superfamily of enzymes that have been a focus in research for decades due to their prominent role in drug metabolism. CYP2C is one of the major subfamilies which metabolize more than 10% of all clinically used drugs. In the context of CYP2C19, several key genetic variations that alter the enzyme's activity have been identified and catalogued in the CYP allele nomenclature database. In this study, we investigated the presence of well-established variants as well as novel polymorphisms in the CYP2C19 gene of 62 Orang Asli from the Peninsular Malaysia. A total of 449 genetic variants were detected including 70 novel polymorphisms; 417 SNPs were located in introns, 23 in upstream, 7 in exons, and 2 in downstream regions. Five alleles and seven genotypes were inferred based on the polymorphisms that were found. Null alleles that were observed include CYP2C19*3 (6.5%), *2 (5.7%) and *35 (2.4%) whereas allele with increased function *17 was detected at a frequency of 4.8%. The normal metabolizer genotype was the most predominant (66.1%), followed by intermediate metabolizer (19.4%), rapid metabolizer (9.7%) and poor metabolizer (4.8%) genotypes. Findings from this study provide further insights into the CYP2C19 genetic profile of the Orang Asli as previously unreported variant alleles were detected through the use of massively parallel sequencing technology platform. The systematic and comprehensive analysis of CYP2C19 will allow uncharacterized variants that are present in the Orang Asli to be included in the genotyping panel in the future.
    Matched MeSH terms: Cytochrome P-450 Enzyme System
  20. Haque AKMM, Leong KH, Lo YL, Awang K, Nagoor NH
    Phytomedicine, 2017 Jul 15;31:1-9.
    PMID: 28606510 DOI: 10.1016/j.phymed.2017.05.002
    BACKGROUND: The compound, 1'-S-1'-acetoxychavicol acetate (ACA), isolated from the rhizomes of a Malaysian ethno-medicinal plant, Alpinia conchigera Griff. (Zingiberaceae), was previously shown to have potential in vivo antitumour activities. In the development of a new drug entity, potential interactions of the compound with the cytochrome P450 superfamily metabolizing enzymes need to be ascertain.

    PURPOSE: The concomitant use of therapeutic drugs may cause potential drug-drug interactions by decreasing or increasing plasma levels of the administered drugs, leading to a suboptimal clinical efficacy or a higher risk of toxicity. Thus, evaluating the inhibitory potential of a new chemical entity, and to clarify the mechanism of inhibition and kinetics in the various CYP enzymes is an important step to predict drug-drug interactions.

    STUDY DESIGN: This study was designed to assess the potential inhibitory effects of Alpinia conchigera Griff. rhizomes extract and its active constituent, ACA, on nine c-DNA expressed human cytochrome P450s (CYPs) enzymes using fluorescent CYP inhibition assay.

    METHODS/RESULTS: The half maximal inhibitory concentration (IC50) of Alpinia conchigera Griff. rhizomes extract and ACA was determined for CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5. A. conchigera extract only moderately inhibits on CYP3A4 (IC50 = 6.76 ± 1.88µg/ml) whereas ACA moderately inhibits the activities of CYP1A2 (IC50 = 4.50 ± 0.10µM), CYP2D6 (IC50 = 7.50 ± 0.17µM) and CYP3A4 (IC50 = 9.50 ± 0.57µM) while other isoenzymes are weakly inhibited. In addition, mechanism-based inhibition studies reveal that CYP1A2 and CYP3A4 exhibited non-mechanism based inhibition whereas CYP2D6 showed mechanism-based inhibition. Lineweaver-Burk plots depict that ACA competitively inhibited both CYP1A2 and CYP3A4, with a Ki values of 2.36 ± 0.03 µM and 5.55 ± 0.06µM, respectively, and mixed inhibition towards CYP2D6 with a Ki value of 4.50 ± 0.08µM. Further, molecular docking studies show that ACA is bound to a few key amino acid residues in the active sites of CYP1A2 and CYP3A4, while one amino residue of CYP2D6 through predominantly Pi-Pi interactions.

    CONCLUSION: Overall, ACA may demonstrate drug-drug interactions when co-administered with other therapeutic drugs that are metabolized by CYP1A2, CYP2D6 or CYP3A4 enzymes. Further in vivo studies, however, are needed to evaluate the clinical significance of these interactions.

    Matched MeSH terms: Cytochrome P-450 Enzyme System/genetics; Cytochrome P-450 Enzyme System/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links