Displaying publications 1 - 20 of 262 in total

Abstract:
Sort:
  1. Saadi S, Nacer NE, Saari N, Mohammed AS, Anwar F
    J Biotechnol, 2024 Mar 10;383:1-12.
    PMID: 38309588 DOI: 10.1016/j.jbiotec.2024.01.013
    The attempt of this review article is to determine the impact of nuclear and mitochondrial damages on the propagation of cancer incidences. This review has advanced our understanding to altered genes and their relevant cancerous proteins. The progressive raising effects of free reactive oxygen species ROS and toxicogenic compounds contributed to significant mutation in nuclear and mitochondrial DNA where the incidence of gastric cancer is found to be linked with down regulation of some relevant genes and mutation in some important cellular proteins such as AMP-18 and CA-11. Thereby, the resulting changes in gene mutations induced the apparition of newly polymorphisms eventually leading to unusual cellular expression to mutant proteins. Reduction of these apoptotic growth factors and nuclear damages is increasingly accepted by cell reactivation effect, enhanced cellular signaling and DNA repairs. Acetylation, glycation, pegylation and phosphorylation are among the molecular techniques used in DNA repair for rectifying mutation incidences. In addition, the molecular labeling based fluorescent materials are currently used along with the bioconjugating of signal molecules in targeting disease translocation site, particularly cancers and tumors. These strategies would help in determining relevant compounds capable in overcoming problems of down regulating genes responsible for repair mechanisms. These issues of course need interplay of both proteomic and genomic studies often in combination of molecular engineering to cible the exact expressed gene relevant to these cancerous proteins.
    Matched MeSH terms: DNA, Mitochondrial
  2. Bizhanova N, Nanova O, Fadakar D, Grachev A, Hong Z, Mohd Sah SA, et al.
    Sci Rep, 2024 Mar 02;14(1):5186.
    PMID: 38431728 DOI: 10.1038/s41598-024-55807-x
    The Eurasian lynx (Lynx lynx) exhibits geographic variability and phylogenetic intraspecific relationships. Previous morphological studies have suggested the existence of multiple lynx subspecies, but recent genetic research has questioned this classification, particularly in Central Asia. In this study, we aimed to analyse the geographic and genetic variation in Central Asian lynx populations, particularly the Turkestan lynx and Altai lynx populations, using morphometric data and mtDNA sequences to contribute to their taxonomic classification. The comparative analysis of morphometric data revealed limited clinal variability between lynx samples from the Altai and Tien Shan regions. By examining mtDNA fragments (control region and cytochrome b) obtained from Kazakhstani lynx populations, two subspecies were identified: L. l. isabellinus (represented by a unique haplotype of the South clade, H46) and L. l. wrangeli (represented by haplotypes H36, H45, and H47 of the East clade). L. l. isabellinus was recognized only in Tien Shan Mountain, while Altai lynx was likely identical to L. l. wrangeli and found in northern Kazakhstan, Altai Mountain, Saur and Tarbagatai Mountains, and Tien Shan Mountain. The morphological and mtDNA evidence presented in this study, although limited in sample size and number of genetic markers, renders the differentiation of the two subspecies challenging. Further sampling and compilation of whole-genome sequencing data are necessary to confirm whether the proposed subspecies warrant taxonomic standing.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  3. Fam YQ, Jamaluddin JAF, Muhammad-Rasul AH, Ilham-Norhakim ML, Rosely NFN, Lavoué S
    J Fish Biol, 2024 Jan;104(1):171-183.
    PMID: 37775959 DOI: 10.1111/jfb.15572
    The variability in the stenotopic miniature rasborine Boraras maculatus (Cypriniformes: Danionidae: Rasborinae) across acidic-water habitats of Peninsular Malaysia (PM) was investigated using two molecular markers (the mitochondrial cytochrome c oxidase subunit I [COI] gene and the nuclear rhodopsin gene), as well as morphological evidence. Molecular phylogenetic analyses revealed differentiation among populations of B. maculatus in PM with the distinction of four allopatric lineages. Each of them was recognized as a putative species by automatic species delimitation methods. These lineages diverged from each other between 7.4 and 1.9 million years ago. A principal component analysis (PCA) was conducted to examine the multivariate variation in 11 morphometric measurements among three of these lineages. PCA results showed a significant overlap in morphological characteristics among these lineages. Additionally, a photograph-based machine learning approach failed to fully differentiate these lineages, suggesting limited morphological differentiation. B. maculatus represents a case of morphological stasis in a stenotopic miniature species. Strong habitat preference, coupled with long-term habitat fragmentation, may explain why each lineage of B. maculatus has a restricted distribution and did not disperse to other regions within and outside of PM, despite ample possibilities when the Sunda shelf was emerged and drained by large paleodrainages for most of the past 7 million years. The conservation status of B. maculatus and its peat swamp habitats are discussed, and it is concluded that peat swamps comprise several evolutionary units. Each of these units is considered a conservation unit and deserves appropriate protection.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  4. Noorhidayah M, Azrizal-Wahid N, Low VL, Yusoff NR
    PLoS One, 2024;19(4):e0301392.
    PMID: 38578719 DOI: 10.1371/journal.pone.0301392
    Despite is known to have widespread distribution and the most active species of the family Chlorocyphidae, the molecular data of Rhinocypha fenestrella (Rambur, 1842) are relatively scarce. The present study is the first that examined the genetic diversity and phylogeographic pattern of the peacock jewel-damselfly R. fenestrella by sequencing the cytochrome C oxidase I (cox1) and 16S rRNA gene regions from 147 individuals representing eight populations in Malaysia. A total of 26 and 10 unique haplotypes were revealed by the cox1 and 16S rRNA genes, respectively, and 32 haplotypes were recovered by the concatenated sequences of cox1+16S. Analyses indicated that haplotype AB2 was the most frequent and the most widespread haplotype in Malaysia while haplotype AB1 was suggested as the common ancestor haplotype of the R. fenestrella that may arose from the Negeri Sembilan as discovered from cox1+16S haplotype network analysis. Overall haplotype and nucleotide diversities of the concatenated sequences were Hd = 0.8937 and Pi = 0.0028, respectively, with great genetic differentiation (FST = 0.6387) and low gene flow (Nm = 0.14). Population from Pahang presented the highest genetic diversity (Hd = 0.8889, Pi = 0.0022, Nh = 9), whereas Kedah population demonstrated the lowest diversity (Hd = 0.2842, Pi = 0.0003, Nh = 4). The concatenated sequences of cox1+16S showed genetic divergence ranging from 0.09% to 0.97%, whereas the genetic divergence for cox1 and 16S rRNA genes were 0.16% to 1.63% and 0.01% to 0.75% respectively. This study provides for the first-time insights on the intraspecific genetic diversity, phylogeographic pattern and ancestral haplotype of Rhinocypha fenestrella. The understanding of molecular data especially phylogeographic pattern can enhance the knowledge about insect origin, their diversity, and capability to disperse in particular environments.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  5. Roesma DI, Tjong DH, Syaifullah, Aidil DR, Maulana MR, Salis VM
    Pak J Biol Sci, 2023 Nov;26(12):615-627.
    PMID: 38334154 DOI: 10.3923/pjbs.2023.615.627
    <b>Background and Objective:</b> The <i>Helarctos malayanus</i> is the sole bear species-living in Indonesia (Sumatra and Borneo). The available biological data for sun bears (<i>H. malayanus</i>) in Sumatra is limited, especially for morphological and genetic data. A morphological approach is difficult to do. Therefore, a molecular approach is the most likely choice. Phylogenetic analysis was carried out on <i>H. malayanus</i> in Central Sumatra (Dharmasraya, South Solok and Riau) using the Cytochrome B gene. <b>Materials and Methods:</b> Blood samples from three individuals of <i>H. malayanus</i> were obtained at the Sumatran Tiger Rehabilitation Center, Dharmasraya. Three <i>H. malayanus</i> Central Sumatra sequences and 62 GenBank sequences were used in the analysis. The DNA sequences were analyzed using the DNA Star, AliView, Bioedit, DNA SP, haplotype network, IQ Tree and MEGA software. <b>Results:</b> Forty-one haplotypes were identified in 65 sequences, with 17 haplotypes belonging to <i>H. malayanus</i>. Haplotype network analysis divides <i>H. malayanus</i> into Haplogroup I (Sundaland) and Haplogroup II (Mainland). All individuals of <i>H. malayanus</i> in Central Sumatra have the same haplotype as Peninsular Malaysia sequence. The sun bear (<i>H. malayanus</i>) has a monophyletic relationship with other bear species. The <i>H. malayanus</i> has a higher genetic distance between the two lineages (1.0-2.3%) than the genetic distance within the subpopulations of each lineage. <b>Conclusion:</b> The study results supported sun bear (<i>H. malayanus</i>) divided into two different lineages: Mainland (subcluster 1) and Sundaland (subcluster 2 and 3). The geographic isolation causes the absence of gene flow, which results in high genetic distance between sun bears (<i>H. malayanus</i>) in Sundaland and Mainland lineages.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  6. Ibrahim AH, Rahman NNA, Saifuddeen SM
    J Bioeth Inq, 2023 Sep;20(3):485-495.
    PMID: 37440155 DOI: 10.1007/s11673-023-10279-y
    Mitochondrial replacement technology (MRT) is an emerging and complex bioethical issue. This treatment aims to eliminate maternal inherited mitochondrial DNA (mtDNA) disorders. For Muslims, its introduction affects every aspect of human life, especially the five essential interests of human beings-namely, religion, life, lineage, intellect, and property. Thus, this technology must be assessed using a comprehensive and holistic approach addressing these human essential interests. Consequently, this article analyses and assesses tri-parent baby technology from the perspective of Maqasidic bioethics-that is, Islamic bioethics based on the framework of Maqasid al-Shariah. Using this analysis, this article suggests that tri-parent baby technology should not be permitted for Muslims due to the existence of third-party cell gametes which lead to lineage mixing and due to the uncertain safety of the therapy itself and because the major aim of the technology is to fulfil the affected couples interest to conceive their own genetically healthy child, not to treat and cure mtDNA disorders sufferers.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  7. Low HC, Chilian WM, Ratnam W, Karupaiah T, Md Noh MF, Mansor F, et al.
    Br J Biomed Sci, 2023;80:10884.
    PMID: 36866104 DOI: 10.3389/bjbs.2023.10884
    Type 2 Diabetes Mellitus is a major chronic metabolic disorder in public health. Due to mitochondria's indispensable role in the body, its dysfunction has been implicated in the development and progression of multiple diseases, including Type 2 Diabetes mellitus. Thus, factors that can regulate mitochondrial function, like mtDNA methylation, are of significant interest in managing T2DM. In this paper, the overview of epigenetics and the mechanism of nuclear and mitochondrial DNA methylation were briefly discussed, followed by other mitochondrial epigenetics. Subsequently, the association between mtDNA methylation with T2DM and the challenges of mtDNA methylation studies were also reviewed. This review will aid in understanding the impact of mtDNA methylation on T2DM and future advancements in T2DM treatment.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  8. Salis AT, Bray SCE, Lee MSY, Heiniger H, Barnett R, Burns JA, et al.
    Mol Ecol, 2022 Dec;31(24):6407-6421.
    PMID: 34748674 DOI: 10.1111/mec.16267
    The Bering Land Bridge connecting North America and Eurasia was periodically exposed and inundated by oscillating sea levels during the Pleistocene glacial cycles. This land connection allowed the intermittent dispersal of animals, including humans, between Western Beringia (far northeast Asia) and Eastern Beringia (northwest North America), changing the faunal community composition of both continents. The Pleistocene glacial cycles also had profound impacts on temperature, precipitation and vegetation, impacting faunal community structure and demography. While these palaeoenvironmental impacts have been studied in many large herbivores from Beringia (e.g., bison, mammoths, horses), the Pleistocene population dynamics of the diverse guild of carnivorans present in the region are less well understood, due to their lower abundances. In this study, we analyse mitochondrial genome data from ancient brown bears (Ursus arctos; n = 103) and lions (Panthera spp.; n = 39), two megafaunal carnivorans that dispersed into North America during the Pleistocene. Our results reveal striking synchronicity in the population dynamics of Beringian lions and brown bears, with multiple waves of dispersal across the Bering Land Bridge coinciding with glacial periods of low sea levels, as well as synchronous local extinctions in Eastern Beringia during Marine Isotope Stage 3. The evolutionary histories of these two taxa underline the crucial biogeographical role of the Bering Land Bridge in the distribution, turnover and maintenance of megafaunal populations in North America.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  9. Yang J, Chen S, Duan F, Wang X, Zhang X, Lian B, et al.
    Cells, 2022 Nov 06;11(21).
    PMID: 36359908 DOI: 10.3390/cells11213511
    Mitochondrial cardiomyopathy (MCM) is characterized by abnormal heart-muscle structure and function, caused by mutations in the nuclear genome or mitochondrial DNA. The heterogeneity of gene mutations and various clinical presentations in patients with cardiomyopathy make its diagnosis, molecular mechanism, and therapeutics great challenges. This review describes the molecular epidemiology of MCM and its clinical features, reviews the promising diagnostic tests applied for mitochondrial diseases and cardiomyopathies, and details the animal and cellular models used for modeling cardiomyopathy and to investigate disease pathogenesis in a controlled in vitro environment. It also discusses the emerging therapeutics tested in pre-clinical and clinical studies of cardiac regeneration.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  10. Ichikawa-Seki M, Hayashi K, Tashiro M, Khadijah S
    Infect Genet Evol, 2022 Nov;105:105373.
    PMID: 36202207 DOI: 10.1016/j.meegid.2022.105373
    Fasciola gigantica and hybrid Fasciola flukes, responsible for the disease fasciolosis, are found in Southeast Asian countries. In the present study, we performed molecular species identification of Fasciola flukes distributed in Terengganu, Malaysia using multiplex PCR for phosphoenolpyruvate carboxykinase (pepck) and PCR-restriction fragment length polymorphism (RFLP) for DNA polymerase delta (pold). Simultaneously, phylogenetic analysis based on mitochondrial NADH dehydrogenase subunit 1 (nad1) was performed for the first time on Malaysian Fasciola flukes to infer the dispersal direction among neighboring countries. A total of 40 flukes used in this study were identified as F. gigantica. Eight nad1 haplotypes were identified in the F. gigantica population of Terengganu. Median-joining network analysis revealed that the Malaysian population was related to those obtained from bordering countries such as Thailand and Indonesia. However, genetic differentiation was detected using population genetics analyses. Nevertheless, the nucleotide diversity (π) value suggested that F. gigantica with the predominant haplotypes was introduced into Malaysia from Thailand and Indonesia. The dispersal direction suggested by population genetics in the present study may not be fully reliable since Fasciola flukes were collected from a single location in one state of Malaysia. Further studies analyzing more samples from many locations are required to validate the dispersal direction proposed herein.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  11. Kiyooka T, Ohanyan V, Yin L, Pung YF, Chen YR, Chen CL, et al.
    Basic Res Cardiol, 2022 Jan 17;117(1):3.
    PMID: 35039940 DOI: 10.1007/s00395-021-00908-1
    Endothelial dysfunction in diabetes is generally attributed to oxidative stress, but this view is challenged by observations showing antioxidants do not eliminate diabetic vasculopathy. As an alternative to oxidative stress-induced dysfunction, we interrogated if impaired mitochondrial function in endothelial cells is central to endothelial dysfunction in the metabolic syndrome. We observed reduced coronary arteriolar vasodilation to the endothelium-dependent dilator, acetylcholine (Ach), in Zucker Obese Fatty rats (ZOF, 34 ± 15% [mean ± standard deviation] 10-3 M) compared to Zucker Lean rats (ZLN, 98 ± 11%). This reduction in dilation occurred concomitantly with mitochondrial DNA (mtDNA) strand lesions and reduced mitochondrial complex activities in the endothelium of ZOF versus ZLN. To demonstrate endothelial dysfunction is linked to impaired mitochondrial function, administration of a cell-permeable, mitochondria-directed endonuclease (mt-tat-EndoIII), to repair oxidatively modified DNA in ZOF, restored mitochondrial function and vasodilation to Ach (94 ± 13%). Conversely, administration of a cell-permeable, mitochondria-directed exonuclease (mt-tat-ExoIII) produced mtDNA strand breaks in ZLN, reduced mitochondrial complex activities and vasodilation to Ach in ZLN (42 ± 16%). To demonstrate that mitochondrial function is central to endothelium-dependent vasodilation, we introduced (via electroporation) liver mitochondria (from ZLN) into the endothelium of a mesenteric vessel from ZOF and restored endothelium-dependent dilation to vasoactive intestinal peptide (VIP at 10-5 M, 4 ± 3% vasodilation before mitochondrial transfer and 48 ± 36% after transfer). Finally, to demonstrate mitochondrial function is key to endothelium-dependent dilation, we administered oligomycin (mitochondrial ATP synthase inhibitor) and observed a reduction in endothelium-dependent dilation. We conclude that mitochondrial function is critical for endothelium-dependent vasodilation.
    Matched MeSH terms: DNA, Mitochondrial/metabolism
  12. Soon BH, Abu N, Abdul Murad NA, Then SM, Abu Bakar A, Fadzil F, et al.
    Per Med, 2022 01;19(1):25-39.
    PMID: 34873928 DOI: 10.2217/pme-2021-0033
    Aim: Mitochondrial DNA (mtDNA) alterations play an important role in the multistep processes of cancer development. Gliomas are among the most diagnosed brain cancer. The relationship between mtDNA alterations and different grades of gliomas are still elusive. This study aimed to elucidate the profile of somatic mtDNA mutations in different grades of gliomas and correlate it with clinical phenotype. Materials & methods: Forty histopathologically confirmed glioma tissue samples and their matched blood were collected and subjected for mtDNA sequencing. Results & conclusion: About 75% of the gliomas harbored at least one somatic mutation in the mtDNA gene, and 45% of these mutations were pathogenic. Mutations were scattered across the mtDNA genome, and the commonest nonsynonymous mutations were located at complex I and IV of the mitochondrial respiratory chain. These findings may have implication for future research to determine the mitochondrial energetics and its downstream metabolomics on gliomas.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  13. Kuan SW, Chua KH, Tan EW, Tan LK, Loch A, Kee BP
    PeerJ, 2022;10:e13265.
    PMID: 35441061 DOI: 10.7717/peerj.13265
    Cardiomyopathy (CMP) constitutes a diverse group of myocardium diseases affecting the pumping ability of the heart. Genetic predisposition is among the major factors affecting the development of CMP. Globally, there are over 100 genes in autosomal and mitochondrial DNA (mtDNA) that have been reported to be associated with the pathogenesis of CMP. However, most of the genetic studies have been conducted in Western countries, with limited data being available for the Asian population. Therefore, this study aims to investigate the mutation spectrum in the mitochondrial genome of 145 CMP patients in Malaysia. Long-range PCR was employed to amplify the entire mtDNA, and whole mitochondrial genome sequencing was conducted on the MiSeq platform. Raw data was quality checked, mapped, and aligned to the revised Cambridge Reference Sequence (rCRS). Variants were named, annotated, and filtered. The sequencing revealed 1,077 variants, including 18 novel and 17 CMP and/or mitochondrial disease-associated variants after filtering. In-silico predictions suggested that three of the novel variants (m.8573G>C, m.11916T>A and m.11918T>G) in this study are potentially pathogenic. Two confirmed pathogenic variants (m.1555A>G and m.11778G>A) were also found in the CMP patients. The findings of this study shed light on the distribution of mitochondrial mutations in Malaysian CMP patients. Further functional studies are required to elucidate the role of these variants in the development of CMP.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  14. Coppard SE, Jessop H, Lessios HA
    Sci Rep, 2021 Aug 16;11(1):16568.
    PMID: 34400682 DOI: 10.1038/s41598-021-95872-0
    The sea urchins Echinothrix calamaris and Echinothrix diadema have sympatric distributions throughout the Indo-Pacific. Diverse colour variation is reported in both species. To reconstruct the phylogeny of the genus and assess gene flow across the Indo-Pacific we sequenced mitochondrial 16S rDNA, ATPase-6, and ATPase-8, and nuclear 28S rDNA and the Calpain-7 intron. Our analyses revealed that E. diadema formed a single trans-Indo-Pacific clade, but E. calamaris contained three discrete clades. One clade was endemic to the Red Sea and the Gulf of Oman. A second clade occurred from Malaysia in the West to Moorea in the East. A third clade of E. calamaris was distributed across the entire Indo-Pacific biogeographic region. A fossil calibrated phylogeny revealed that the ancestor of E. diadema diverged from the ancestor of E. calamaris ~ 16.8 million years ago (Ma), and that the ancestor of the trans-Indo-Pacific clade and Red Sea and Gulf of Oman clade split from the western and central Pacific clade ~ 9.8 Ma. Time since divergence and genetic distances suggested species level differentiation among clades of E. calamaris. Colour variation was extensive in E. calamaris, but not clade or locality specific. There was little colour polymorphism in E. diadema.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  15. Yong HS, Chua KO, Song SL, Liew YJ, Eamsobhana P, Chan KG
    Mol Biol Rep, 2021 Aug;48(8):6047-6056.
    PMID: 34357549 DOI: 10.1007/s11033-021-06608-2
    BACKGROUND: Tephritid fruit flies of the genus Dacus are members of the tribe Dacini, subfamily Dacinae. There are some 274 species worldwide, distributed in Africa and the Asia-Pacific. To date, only five complete mitochondrial genomes (mitogenomes) of Dacus fruit flies have been published and are available in the GenBank.

    METHODS AND RESULTS: In view of the lack of study on their mitogenome, we sequenced (by next generation sequencing) and annotated the complete mitogenome of D. vijaysegarani from Malaysia to determine its features and phylogenetic relationship. The whole mitogenome of D. vijaysegarani has identical gene order with the published mitogenomes of the genus Dacus, with 13 protein-coding genes, two rRNA genes, 22 tRNAs, a non-coding A + T rich control region, and intergenic spacer and overlap sequences. Phylogenetic analysis based on 15 mitochondrial genes (13 PCGs and two rRNA genes), reveals Dacus, Zeugodacus and Bactrocera forming a distinct clade. The genus Dacus forms a monophyletic group in the subclade containing also the Zeugodacus group; this Dacus-Zeugodacus subclade is distinct from the Bactrocera subclade. D. (Mellesis) vijaysegarani forms a lineage with D. (Mellesis) trimacula in the subcluster containing also the lineage of D. (Mellesis) conopsoides and D. (Callantra) longicornis. D. (Dacus) bivittatus and D. (Didacus) ciliatus form a distinct subcluster. Based on cox1 sequences, the Malaysia and Vietnam taxa of D. vijaysegarani may not be conspecific.

    CONCLUSIONS: Overall, the mitochondrial genome of D. vijaysegarani provided essential molecular data that could be useful for further studies for species diagnosis, evolution and phylogeny research of other tephritid fruit flies in the future.

    Matched MeSH terms: DNA, Mitochondrial/genetics
  16. Lim LWK, Chung HH, Lau MML, Aziz F, Gan HM
    Gene, 2021 Jul 30;791:145708.
    PMID: 33984441 DOI: 10.1016/j.gene.2021.145708
    The true mahseer (Tor spp.) is one of the highest valued fish in the world due to its high nutritional value and great unique taste. Nevertheless, its morphological characterization and single mitochondrial gene phylogeny in the past had yet to resolve the ambiguity in its taxonomical classification. In this study, we sequenced and assembled 11 complete mahseer mitogenomes collected from Java of Indonesia, Pahang and Terengganu of Peninsular Malaysia as well as Sarawak of East Malaysia. The mitogenome evolutionary relationships among closely related Tor spp. samples were investigated based on maximum likelihood phylogenetic tree construction. Compared to the commonly used COX1 gene fragment, the complete COX1, Cytb, ND2, ND4 and ND5 genes appear to be better phylogenetic markers for genetic differentiation at the population level. In addition, a total of six population-specific mitolineage haplotypes were identified among the mahseer samples analyzed, which this offers hints towards its taxonomical landscape.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  17. Lim KC, Then AY, Wee AKS, Sade A, Rumpet R, Loh KH
    Sci Rep, 2021 Jul 21;11(1):14874.
    PMID: 34290296 DOI: 10.1038/s41598-021-94257-7
    The demersal brown banded bamboo shark Chiloscyllium punctatum is a major component of sharks landed in Malaysia. However, little is known about their population structure and the effect of high fishing pressure on these weak swimming sharks. Both mitochondrial DNA control region (1072 bp) and NADH dehydrogenase subunit 2 (1044 bp) were used to elucidate the genetic structure and connectivity of C. punctatum among five major areas within the Sundaland region. Our findings revealed (i) strong genetic structure with little present day mixing between the major areas, (ii) high intra-population genetic diversity with unique haplotypes, (iii) significant correlation between genetic differentiation and geographical distance coupled with detectable presence of fine scale geographical barriers (i.e. the South China Sea), (iv) historical directional gene flow from the east coast of Peninsular Malaysia towards the west coast and Borneo, and (v) no detectable genetic differentiation along the coastline of east Peninsular Malaysia. Genetic patterns inferred from the mitochondrial DNA loci were consistent with the strong coastal shelf association in this species, the presence of contemporary barriers shaped by benthic features, and limited current-driven egg dispersal. Fine scale population structure of C. punctatum highlights the need to improve genetic understanding for fishery management and conservation of other small-sized sharks.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  18. Mohd Yusoff NIS, Mat Jaafar TNA, Vilasri V, Mohd Nor SA, Seah YG, Habib A, et al.
    Sci Rep, 2021 Jun 25;11(1):13357.
    PMID: 34172804 DOI: 10.1038/s41598-021-92905-6
    Benthic species, though ecologically important, are vulnerable to genetic loss and population size reduction due to impacts from fishing trawls. An assessment of genetic diversity and population structure is therefore needed to assist in a resource management program. To address this issue, the two-spined yellowtail stargazer (Uranoscopus cognatus) was collected within selected locations in the Indo-West Pacific (IWP). The partial mitochondrial DNA cytochrome c oxidase subunit 1 and the nuclear DNA recombination activating gene 1 were sequenced. Genetic diversity analyses revealed that the populations were moderately to highly diversified (haplotype diversity, H = 0.490-0.900, nucleotide diversity, π = 0.0010-0.0034) except sampling station (ST) 1 and 14. The low diversity level, however was apparent only in the matrilineal marker (H = 0.118-0.216; π = 0.0004-0.0008), possibly due to stochastic factors or anthropogenic stressors. Population structure analyses revealed a retention of ancestral polymorphism that was likely due to incomplete lineage sorting in U. cognatus, and prolonged vicariance by the Indo-Pacific Barrier has partitioned them into separate stock units. Population segregation was also shown by the phenotypic divergence in allopatric populations, regarding the premaxillary protrusion, which is possibly associated with the mechanism for upper jaw movement in biomechanical feeding approaches. The moderate genetic diversity estimated for each region, in addition to past population expansion events, indicated that U. cognatus within the IWP was still healthy and abundant (except in ST1 and 14), and two stock units were identified to be subjected to a specific resource management program.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  19. Phillips MJ, Shazwani Zakaria S
    Mol Phylogenet Evol, 2021 05;158:107082.
    PMID: 33482383 DOI: 10.1016/j.ympev.2021.107082
    Mitochondrial genomes provided the first widely used sequences that were sufficiently informative to resolve relationships among animals across a wide taxonomic domain, from within species to between phyla. However, mitogenome studies supported several anomalous relationships and fell partly out of favour as sequencing multiple, independent nuclear loci proved to be highly effective. A tendency to blame mitochondrial DNA (mtDNA) has overshadowed efforts to understand and ameliorate underlying model misspecification. Here we find that influential assessments of the infidelity of mitogenome phylogenies have often been overstated, but nevertheless, substitution saturation and compositional non-stationarity substantially mislead reconstruction. We show that RY coding the mtDNA, excluding protein-coding 3rd codon sites, partitioning models based on amino acid hydrophobicity and enhanced taxon sampling improve the accuracy of mitogenomic phylogeny reconstruction for placental mammals, almost to the level of multi-gene nuclear datasets. Indeed, combined analysis of mtDNA with 3-fold longer nuclear sequence data either maintained or improved upon the nuclear support for all generally accepted clades, even those that mtDNA alone did not favour, thus indicating "hidden support". Confident mtDNA phylogeny reconstruction is especially important for understanding the evolutionary dynamics of mitochondria themselves, and for merging extinct taxa into the tree of life, with ancient DNA often only accessible as mtDNA. Our ancient mtDNA analyses lend confidence to the relationships of three extinct megafaunal taxa: glyptodonts are nested within armadillos, the South American ungulate, Macrauchenia is sister to horses and rhinoceroses, and sabre-toothed and scimitar cats are the monophyletic sister-group of modern cats.
    Matched MeSH terms: DNA, Mitochondrial
  20. Azrizal-Wahid N, Sofian-Azirun M, Low VL
    PMID: 33609991 DOI: 10.1016/j.cimid.2021.101621
    Flea-borne pathogens were screened from 100 individual cat fleas using a PCR approach, of which 38 % were infected with at least one bacterium. Overall, 28 % of the flea samples were positive for Bartonella as inferred from ITS DNA region. Of these, 25 % (7/28) were identified as Bartonella clarridgeiae, 42.9 % (12/28) as Bartonella henselae consisted of two different strains, and 32.1 % (9/28) as Bartonella koehlerae, which was detected for the first time in Malaysia. Sequencing of gltA amplicons detected Rickettsia DNA in 14 % of cat flea samples, all of them identified as Rickettsia asembonensis (100 %). None of the flea samples were positive for Mycoplasma DNA in 16S rRNA gene detection. Four fleas were co-infected with Bartonella and Rickettsia DNAs. Statistical analyses reveal no significant association between bacterial infection and mtDNA diversity of the cat flea. Nevertheless, in all types of pathogen infections, infected populations demonstrated lower nucleotide and haplotype diversities compared to uninfected populations. Moreover, lower haplotype numbers were observed in infected populations.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links