Displaying publications 1 - 20 of 82 in total

Abstract:
Sort:
  1. Meng W, Zhu Z, Jiang X, Too CL, Uebe S, Jagodic M, et al.
    Arthritis Res Ther, 2017 03 29;19(1):71.
    PMID: 28356135 DOI: 10.1186/s13075-017-1276-2
    BACKGROUND: Multiple factors, including interactions between genetic and environmental risks, are important in susceptibility to rheumatoid arthritis (RA). However, the underlying mechanism is not fully understood. This study was undertaken to evaluate whether DNA methylation can mediate the interaction between genotype and smoking in the development of anti-citrullinated peptide antibody (ACPA)-positive RA.

    METHODS: We investigated the gene-smoking interactions in DNA methylation using 393 individuals from the Epidemiological Investigation of Rheumatoid Arthritis (EIRA). The interaction between rs6933349 and smoking in the risk of developing ACPA-positive RA was further evaluated in a larger portion of the EIRA (1119 controls and 944 ACPA-positive patients with RA), and in the Malaysian Epidemiological Investigation of Rheumatoid Arthritis (MyEIRA) (1556 controls and 792 ACPA-positive patients with RA). Finally, mediation analysis was performed to investigate whether DNA methylation of cg21325723 mediates this gene-environment interaction on the risk of developing of ACPA-positive RA.

    RESULTS: We identified and replicated one significant gene-environment interaction between rs6933349 and smoking in DNA methylation of cg21325723. This gene-smoking interaction is a novel interaction in the risk of developing ACPA-positive in both Caucasian (multiplicative P value = 0.056; additive P value = 0.016) and Asian populations (multiplicative P value = 0.035; additive P value = 0.00027), and it is mediated through DNA methylation of cg21325723.

    CONCLUSIONS: We showed that DNA methylation of cg21325723 can mediate the gene-environment interaction between rs6933349 and smoking, impacting the risk of developing ACPA-positive RA, thus being a potential regulator that integrates both internal genetic and external environmental risk factors.
    Matched MeSH terms: DNA Methylation/genetics*
  2. Khor GH, Froemming GR, Zain RB, Abraham MT, Thong KL
    Asian Pac J Cancer Prev, 2014;15(20):8957-61.
    PMID: 25374236
    BACKGROUND: Promoter hypermethylation leads to altered gene functions and may result in malignant cellular transformation. Thus, identification of biomarkers for hypermethylated genes could be useful for diagnosis, prognosis, and therapeutic treatment of oral squamous cell carcinoma (OSCC).

    OBJECTIVES: To screen hypermethylated genes with a microarray approach and to validate selected hypermethylated genes with the methylation-specific polymerase chain reaction (MSPCR).

    MATERIALS AND METHODS: Genome-wide analysis of normal oral mucosa and OSCC tissues was conducted using the Illumina methylation microarray. The specified differential genes were selected and hypermethylation status was further verified with an independent cohort sample of OSCC samples. Candidate genes were screened using microarray assay and run by MSPCR analysis.

    RESULTS: TP73, PIK3R5, and CELSR3 demonstrated high percentages of differential hypermethylation status.

    CONCLUSIONS: Our microarray screening and MSPCR approaches revealed that the signature candidates of differentially hypermethylated genes may possibly become potential biomarkers which would be useful for diagnostic, prognostic and therapeutic targets of OSCC in the near future.

    Matched MeSH terms: DNA Methylation*
  3. Wan Abdul Rahman WF, Fauzi MH, Jaafar H
    Asian Pac J Cancer Prev, 2014;15(19):8441-5.
    PMID: 25339043
    BACKGROUND: Paired-like homeodomain transcription factor 2 (PITX2) is another new marker in breast carcinoma since hypermethylation at P2 promoter of this gene was noted to be associated with poor prognosis. We investigated the expression of PITX2 protein using immunohistochemistry in invasive ductal carcinoma and its association with the established growth receptors such as estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth receptor 2 (HER2).

    METHODS: We conducted a cross sectional study using 100 samples of archived formalin-fixed paraffin embedded tissue blocks of invasive ductal carcinoma and stained them with immunohistochemistry for PITX2, ER, PR and HER2. All HER2 with scoring of 2+ were confirmed with chromogenic in-situ hybridization (CISH).

    RESULTS: PITX2 protein was expressed in 53% of invasive ductal carcinoma and lack of PITX2 expression in 47%. Univariate analysis revealed a significant association between PITX2 expression with PR (p=0.001), ER (p=0.006), gland formation (p=0.044) and marginal association with molecular subtypes of breast carcinoma (p=0.051). Combined ER and PR expression with PITX2 was also significantly associated (p=0.003) especially in double positive cases. Multivariate analysis showed the most significant association between PITX2 and PR (RR 4.105, 95% CI 1.765-9.547, p=0.001).

    CONCLUSION: PITX2 is another potential prognostic marker in breast carcinoma adding significant information to established prognostic factors of ER and PR. The expression of PITX2 together with PR may carry a very good prognosis.

    Matched MeSH terms: DNA Methylation*
  4. Al-Jamal HA, Jusoh SA, Yong AC, Asan JM, Hassan R, Johan MF
    Asian Pac J Cancer Prev, 2014;15(11):4555-61.
    PMID: 24969884
    BACKGROUND: Silencing due to methylation of suppressor of cytokine signaling-3 (SOCS-3), a negative regulator gene for the JAK/STAT signaling pathway has been reported to play important roles in leukemogenesis. Imatinib mesylate is a tyrosine kinase inhibitor that specifically targets the BCR-ABL protein and induces hematological remission in patients with chronic myeloid leukemia (CML). Unfortunately, the majority of CML patients treated with imatinib develop resistance under prolonged therapy. We here investigated the methylation profile of SOCS-3 gene and its downstream effects in a BCR-ABL positive CML cells resistant to imatinib.

    MATERIALS AND METHODS: BCR-ABL positive CML cells resistant to imatinib (K562-R) were developed by overexposure of K562 cell lines to the drug. Cytotoxicity was determined by MTS assays and IC50 values calculated. Apoptosis assays were performed using annexin V-FITC binding assays and analyzed by flow cytometry. Methylation profiles were investigated using methylation specific PCR and sequencing analysis of SOCS-1 and SOCS-3 genes. Gene expression was assessed by quantitative real-time PCR, and protein expression and phosphorylation of STAT1, 2 and 3 were examined by Western blotting.

    RESULTS: The IC50 for imatinib on K562 was 362 nM compared to 3,952 nM for K562-R (p=0.001). Percentage of apoptotic cells in K562 increased upto 50% by increasing the concentration of imatinib, in contrast to only 20% in K562-R (p<0.001). A change from non-methylation of the SOCS-3 gene in K562 to complete methylation in K562-R was observed. Gene expression revealed down- regulation of both SOCS-1 and SOCS-3 genes in resistant cells. STAT3 was phosphorylated in K562-R but not K562.

    CONCLUSIONS: Development of cells resistant to imatinib is feasible by overexposure of the drug to the cells. Activation of STAT3 protein leads to uncontrolled cell proliferation in imatinib resistant BCR-ABL due to DNA methylation of the SOCS-3 gene. Thus SOCS-3 provides a suitable candidate for mechanisms underlying the development of imatinib resistant in CML patients.

    Matched MeSH terms: DNA Methylation/genetics*
  5. Khor GH, Froemming GR, Zain RB, Abraham TM, Lin TK
    Asian Pac J Cancer Prev, 2016;17(1):219-23.
    PMID: 26838213
    BACKGROUND: Promoter hypermethylation is a frequent epigenetic mechanism for gene transcription repression in cancer and is one of the hallmarks of the disease. Cadherin EGF LAG seven-pass G-type receptor 3 (CELSR3) contributes to cell contact-mediated communication. Dysregulation of promoter methylation has been reported in various cancers.

    OBJECTIVES: The objectives of this study were to investigate the CELSR3 hypermethylation level in oral squamous cell carcinomas (OSCCs) using methylation-sensitive high-resolution melting analysis (MS-HRM) and to correlate CELSR3 methylation with patient demographic and clinicopathological parameters.

    MATERIALS AND METHODS: Frozen tissue samples of healthy subjects' normal mucosa and OSCCs were examined with regard to their methylation levels of the CELSR3 gene using MS-HRM.

    RESULTS: MS-HRM analysis revealed a high methylation level of CELSR3 in 86% of OSCC cases. Significant correlations were found between CELSR3 quantitative methylation levels with patient ethnicity (P=0.005), age (P=0.024) and pathological stages (P=0.004). A moderate positive correlation between CELSR3 and patient age was also evident (R=0.444, P=0.001).

    CONCLUSIONS: CELSR3 promoter hypermethylation may be an important mechanism involved in oral carcinogenesis. It may thus be used as a biomarker in OSCC prognostication.

    Matched MeSH terms: DNA Methylation/genetics*
  6. Mohamad A, Hassan R, Husin A, Johan MF, Sulong S
    Asian Pac J Cancer Prev, 2021 Jan 01;22(1):85-91.
    PMID: 33507683 DOI: 10.31557/APJCP.2021.22.1.85
    OBJECTIVE: Chronic Lymphocytic Leukemia (CLL) is a common leukemia among Caucasians but rare in Asians population. We postulated that aberrant methylation either hypermethylation or partial methylation might be one of the silencing mechanisms that inactivates the tumour suppressor genes in CLL. This study aimed to compare the methylation status of tumour suppressor gene, ADAM12, among CLL patients and normal individuals. We also evaluated the association between methylation of ADAM12 and clinical and demographic characteristics of the participants.

    METHODS: A total of 25 CLL patients and 25 normal individuals were recruited in this study. The methylation status of ADAM12 was determined using Methylation-Specific PCR (MSP); whereas, DNA sequencing method was applied for validation of the MSP results.

    RESULTS: Among CLL patients, 12 (48%) were partially methylated and 13 (52%) were unmethylated. Meanwhile, 5 (20%) and 20 (80.6%) of healthy individuals were partially methylated and unmethylated, respectively. There was a statistically significant association between the status of methylation at ADAM12 and the presence of CLL (p=0.037).

    CONCLUSION: The aberrant methylation of ADAM12 found in this study using MSP assay may provide new exposure to CLL that may improve the gaps involved in genetic epigenetic study in CLL.

    Matched MeSH terms: DNA Methylation*
  7. Adamu HA, Imam MU, Ooi DJ, Esa NM, Rosli R, Ismail M
    BMC Complement Altern Med, 2017 Jan 21;17(1):67.
    PMID: 28109299 DOI: 10.1186/s12906-017-1571-0
    The development of insulin resistance is multifactorial, with maternal pre- and postnatal nutrition having significant influences. In this regard, high fat diet (HFD) feeding in pregnancy has been shown to increase risks of metabolic diseases. Thus, we investigated the effects of supplementation of HFD with germinated brown rice (GBR) and GBR-derived gamma oryzanol-rich extract (OE) on insulin resistance and its epigenetic implications in pregnant rats and their offsprings.
    Matched MeSH terms: DNA Methylation
  8. Lee WC, Anton BP, Wang S, Baybayan P, Singh S, Ashby M, et al.
    BMC Genomics, 2015;16:424.
    PMID: 26031894 DOI: 10.1186/s12864-015-1585-2
    The genome of the human gastric pathogen Helicobacter pylori encodes a large number of DNA methyltransferases (MTases), some of which are shared among many strains, and others of which are unique to a given strain. The MTases have potential roles in the survival of the bacterium. In this study, we sequenced a Malaysian H. pylori clinical strain, designated UM032, by using a combination of PacBio Single Molecule, Real-Time (SMRT) and Illumina MiSeq next generation sequencing platforms, and used the SMRT data to characterize the set of methylated bases (the methylome).
    Matched MeSH terms: DNA Methylation*
  9. Safi SZ, Qvist R, Yan GO, Ismail IS
    BMC Med Genomics, 2014;7:29.
    PMID: 24885710 DOI: 10.1186/1755-8794-7-29
    Aberrant epigenetic profiles are concomitant with a spectrum of developmental defects and diseases. Role of methylation is an increasingly accepted factor in the pathophysiology of diabetes and its associated complications. This study aims to examine the correlation between oxidative stress and methylation of β1, β2 and β3-adrenergic receptors and to analyze the differential variability in the expression of these genes under hyperglycemic conditions.
    Matched MeSH terms: DNA Methylation/genetics
  10. Wei LK, Sutherland H, Au A, Camilleri E, Haupt LM, Gan SH, et al.
    Biomed Res Int, 2015;2015:167976.
    PMID: 25705649 DOI: 10.1155/2015/167976
    Stroke is a multifactorial disease that may be associated with aberrant DNA methylation profiles. We investigated epigenetic dysregulation for the methylenetetrahydrofolate reductase (MTHFR) gene among ischemic stroke patients. Cases and controls were recruited after obtaining signed written informed consents following a screening process against the inclusion/exclusion criteria. Serum vitamin profiles (folate, vitamin B12, and homocysteine) were determined using immunoassays. Methylation profiles for CpGs A and B in the MTHFR gene were determined using a bisulfite-pyrosequencing method. Methylation of MTHFR significantly increased the susceptibility risk for ischemic stroke. In particular, CpG A outperformed CpG B in mediating serum folate and vitamin B12 levels to increase ischemic stroke susceptibility risks by 4.73-fold. However, both CpGs A and B were not associated with serum homocysteine levels or ischemic stroke severity. CpG A is a potential epigenetic marker in mediating serum folate and vitamin B12 to contribute to ischemic stroke.
    Matched MeSH terms: DNA Methylation/genetics
  11. Elias MH, Baba AA, Husin A, Sulong S, Hassan R, Sim GA, et al.
    Biomed Res Int, 2013;2013:129715.
    PMID: 23484077 DOI: 10.1155/2013/129715
    Development of resistance to imatinib mesylate (IM) in chronic myeloid leukemia (CML) patients has emerged as a significant clinical problem. The observation that increased epigenetic silencing of potential tumor suppressor genes correlates with disease progression in some CML patients treated with IM suggests a relationship between epigenetic silencing and resistance development. We hypothesize that promoter hypermethylation of HOXA4 could be an epigenetic mechanism mediating IM resistance in CML patients. Thus a study was undertaken to investigate the promoter hypermethylation status of HOXA4 in CML patients on IM treatment and to determine its role in mediating resistance to IM. Genomic DNA was extracted from peripheral blood samples of 95 CML patients (38 good responders and 57 resistant) and 12 normal controls. All samples were bisulfite treated and analysed by methylation-specific high-resolution melt analysis. Compared to the good responders, the HOXA4 hypermethylation level was significantly higher (P = 0.002) in IM-resistant CML patients. On comparing the risk, HOXA4 hypermethylation was associated with a higher risk for IM resistance (OR 4.658; 95% CI, 1.673-12.971; P = 0.003). Thus, it is reasonable to suggest that promoter hypermethylation of HOXA4 gene could be an epigenetic mechanism mediating IM resistance in CML patients.
    Matched MeSH terms: DNA Methylation/drug effects*
  12. Ngai SC, Rosli R, Al Abbar A, Abdullah S
    Biomed Res Int, 2015;2015:346134.
    PMID: 25961011 DOI: 10.1155/2015/346134
    Stable introduction of a functional gene in hematopoietic progenitor cells (HPCs) has appeared to be an alternative approach to correct genetically linked blood diseases. However, it is still unclear whether lentiviral vector (LV) is subjected to gene silencing in HPCs. Here, we show that LV carrying green fluorescent protein (GFP) reporter gene driven by cytomegalovirus (CMV) promoter was subjected to transgene silencing after transduction into HPCs. This phenomenon was not due to the deletion of proviral copy number. Study using DNA demethylating agent and histone deacetylase (HDAC) inhibitor showed that the drugs could either prevent or reverse the silencing effect. Using sodium bisulfite sequencing and chromatin immunoprecipitation (ChIP) assay, we demonstrated that DNA methylation occurred soon after LV transduction. At the highest level of gene expression, CMV promoter was acetylated and was in a euchromatin state, while GFP reporter gene was acetylated but was strangely in a heterochromatin state. When the expression declined, CMV promoter underwent transition from acetylated and euchromatic state to a heterochromatic state, while the GFP reporter gene was in deacetylated and heterochromatic state. With these, we verify that DNA methylation and dynamic histone modifications lead to transgene silencing in HPCs transduced with LV.
    Matched MeSH terms: DNA Methylation/drug effects; DNA Methylation/genetics*
  13. Wong KK, Lawrie CH, Green TM
    Biomark Insights, 2019;14:1177271919846454.
    PMID: 31105426 DOI: 10.1177/1177271919846454
    Epigenetic alteration has been proposed to give rise to numerous classic hallmarks of cancer. Impaired DNA methylation plays a central role in the onset and progression of several types of malignancies, and DNA methylation is mediated by DNA methyltransferases (DNMTs) consisting of DNMT1, DNMT3A, and DNMT3B. DNMTs are frequently implicated in the pathogenesis and aggressiveness of acute myeloid leukaemia (AML) patients. In this review, we describe and discuss the oncogenic roles of DNMT1, DNMT3A, and DNMT3B in AML. The clinical response predictive roles of DNMTs in clinical trials utilising hypomethylating agents (azacitidine and decitabine) in AML patients are presented. Novel hypomethylating agent (guadecitabine) and experimental DNMT inhibitors in AML are also discussed. In summary, hypermethylation of tumour suppressors mediated by DNMT1 or DNMT3B contributes to the progression and severity of AML (except MLL-AF9 and inv(16)(p13;q22) AML for DNMT3B), while mutation affecting DNMT3A represents an early genetic lesion in the pathogenesis of AML. In clinical trials of AML patients, expression of DNMTs is downregulated by hypomethylating agents while the clinical response predictive roles of DNMT biomarkers remain unresolved. Finally, nucleoside hypomethylating agents have continued to show enhanced responses in clinical trials of AML patients, and novel non-nucleoside DNMT inhibitors have demonstrated cytotoxicity against AML cells in pre-clinical settings.
    Matched MeSH terms: DNA Methylation
  14. Alhaji SY, Ngai SC, Abdullah S
    Biotechnol Genet Eng Rev, 2019 Apr;35(1):1-25.
    PMID: 30514178 DOI: 10.1080/02648725.2018.1551594
    DNA methylation and histone modifications are vital in maintaining genomic stability and modulating cellular functions in mammalian cells. These two epigenetic modifications are the most common gene regulatory systems known to spatially control gene expression. Transgene silencing by these two mechanisms is a major challenge to achieving effective gene therapy for many genetic conditions. The implications of transgene silencing caused by epigenetic modifications have been extensively studied and reported in numerous gene delivery studies. This review highlights instances of transgene silencing by DNA methylation and histone modification with specific focus on the role of these two epigenetic effects on the repression of transgene expression in mammalian cells from integrative and non-integrative based gene delivery systems in the context of gene therapy. It also discusses the prospects of achieving an effective and sustained transgene expression for future gene therapy applications.
    Matched MeSH terms: DNA Methylation
  15. Stremenova Spegarova J, Lawless D, Mohamad SMB, Engelhardt KR, Doody G, Shrimpton J, et al.
    Blood, 2020 Aug 27;136(9):1055-1066.
    PMID: 32518946 DOI: 10.1182/blood.2020005844
    Molecular dissection of inborn errors of immunity can help to elucidate the nonredundant functions of individual genes. We studied 3 children with an immune dysregulation syndrome of susceptibility to infection, lymphadenopathy, hepatosplenomegaly, developmental delay, autoimmunity, and lymphoma of B-cell (n = 2) or T-cell (n = 1) origin. All 3 showed early autologous T-cell reconstitution following allogeneic hematopoietic stem cell transplantation. By whole-exome sequencing, we identified rare homozygous germline missense or nonsense variants in a known epigenetic regulator of gene expression: ten-eleven translocation methylcytosine dioxygenase 2 (TET2). Mutated TET2 protein was absent or enzymatically defective for 5-hydroxymethylating activity, resulting in whole-blood DNA hypermethylation. Circulating T cells showed an abnormal immunophenotype including expanded double-negative, but depleted follicular helper, T-cell compartments and impaired Fas-dependent apoptosis in 2 of 3 patients. Moreover, TET2-deficient B cells showed defective class-switch recombination. The hematopoietic potential of patient-derived induced pluripotent stem cells was skewed toward the myeloid lineage. These are the first reported cases of autosomal-recessive germline TET2 deficiency in humans, causing clinically significant immunodeficiency and an autoimmune lymphoproliferative syndrome with marked predisposition to lymphoma. This disease phenotype demonstrates the broad role of TET2 within the human immune system.
    Matched MeSH terms: DNA Methylation
  16. Shaik MM, Gan SH, Kamal MA
    CNS Neurol Disord Drug Targets, 2014 Mar;13(2):283-9.
    PMID: 24074446 DOI: 10.2174/18715273113126660181
    Cognitive decline is a debilitating feature of Alzheimer's disease (AD). The causes leading to such impairment are still poorly understood and effective treatments for AD are still unavailable. Type 2 diabetes mellitus (T2DM) has been identified as a risk factor for AD due to desensitisation of insulin receptors in the brain. Recent studies have suggested that epigenetic mechanisms may also play a pivotal role in the pathogenesis of both AD and T2DM. This article describes the correlation between AD and T2DM and provides the insights to the epigenetics of AD. Currently, more research is needed to clarify the exact role of epigenetic regulation in the course and development of AD and also in relation to insulin. Research conducted especially in the earlier stages of the disease could provide more insight into its underlying pathophysiology to help in early diagnosis and the development of more effective treatment strategies.
    Matched MeSH terms: DNA Methylation
  17. Elias MH, Azlan H, Sulong S, Baba AA, Ankathil R
    Cancer Rep (Hoboken), 2018 08;1(2):e1111.
    PMID: 32721103 DOI: 10.1002/cnr2.1111
    BACKGROUND: Imatinib mesylate is a molecularly targeted tyrosine kinase inhibitor drug. It is effectively used in the treatment of chronic myeloid leukemia (CML) patients. However, development of resistance to imatinib mesylate as a result of BCR-ABL dependent and BCR-ABL independent mechanisms has emerged as a daunting problem in the management of CML patients. Between these mechanisms, BCR-ABL independent mechanisms are still not robustly understood.

    AIM: To investigate the correlation of HOXA4 and HOXA5 promoter DNA hypermethylation with imatinib resistance among CML patients.

    METHODS AND RESULTS: Samples from 175 Philadelphia positive CML patients (83 good response and 92 BCR-ABL non-mutated imatinib resistant patients) were subjected to Methylation Specific High Resolution Melt Analysis for methylation levels quantification of the HOXA4 and HOXA5 promoter regions. Receiver operating characteristic curve analysis was done to elucidate the optimal methylation cut-off point followed by multiple logistic regression analysis. Log-Rank analysis was done to measure the overall survival difference between CML groups. The optimal methylation cut-off point was found to be at 62.5% for both HOXA4 and HOXA5. Chronic myeloid leukemia patients with ≥63% HOXA4 and HOXA5 methylation level were shown to have 3.78 and 3.95 times the odds, respectively, to acquire resistance to imatinib. However, overall survival of CML patients that have ≤62% and ≥ 63% methylation levels of HOXA4 and HOXA5 genes were found to be not significant (P-value = 0.126 for HOXA4; P-value = 0.217 for HOXA5).

    CONCLUSION: Hypermethylation of the HOXA4 and HOXA5 promoter is correlated with imatinib resistance and with further investigation, it could be a potential epigenetic biomarker in supplement to the BCR-ABL gene mutation in predicting imatinib treatment response among CML patients but could not be considered as a prognostic marker.

    Matched MeSH terms: DNA Methylation
  18. Yang Y, Wu L, Shu X, Lu Y, Shu XO, Cai Q, et al.
    Cancer Res, 2019 Feb 01;79(3):505-517.
    PMID: 30559148 DOI: 10.1158/0008-5472.CAN-18-2726
    DNA methylation is instrumental for gene regulation. Global changes in the epigenetic landscape have been recognized as a hallmark of cancer. However, the role of DNA methylation in epithelial ovarian cancer (EOC) remains unclear. In this study, high-density genetic and DNA methylation data in white blood cells from the Framingham Heart Study (N = 1,595) were used to build genetic models to predict DNA methylation levels. These prediction models were then applied to the summary statistics of a genome-wide association study (GWAS) of ovarian cancer including 22,406 EOC cases and 40,941 controls to investigate genetically predicted DNA methylation levels in association with EOC risk. Among 62,938 CpG sites investigated, genetically predicted methylation levels at 89 CpG were significantly associated with EOC risk at a Bonferroni-corrected threshold of P < 7.94 × 10-7. Of them, 87 were located at GWAS-identified EOC susceptibility regions and two resided in a genomic region not previously reported to be associated with EOC risk. Integrative analyses of genetic, methylation, and gene expression data identified consistent directions of associations across 12 CpG, five genes, and EOC risk, suggesting that methylation at these 12 CpG may influence EOC risk by regulating expression of these five genes, namely MAPT, HOXB3, ABHD8, ARHGAP27, and SKAP1. We identified novel DNA methylation markers associated with EOC risk and propose that methylation at multiple CpG may affect EOC risk via regulation of gene expression. SIGNIFICANCE: Identification of novel DNA methylation markers associated with EOC risk suggests that methylation at multiple CpG may affect EOC risk through regulation of gene expression.
    Matched MeSH terms: DNA Methylation*
  19. Chalertpet K, Pakdeechaidan W, Patel V, Mutirangura A, Yanatatsaneejit P
    Cancer Sci, 2015 Oct;106(10):1333-40.
    PMID: 26250467 DOI: 10.1111/cas.12761
    Human papillomavirus (HPV) oncoproteins drive distinctive promoter methylation patterns in cancer. However, the underlying mechanism remains to be elucidated. Cyclin A1 (CCNA1) promoter methylation is strongly associated with HPV-associated cancer. CCNA1 methylation is found in HPV-associated cervical cancers, as well as in head and neck squamous cell cancer. Numerous pieces of evidence suggest that E7 may drive CCNA1 methylation. First, the CCNA1 promoter is methylated in HPV-positive epithelial lesions after transformation. Second, the CCNA1 promoter is methylated at a high level when HPV is integrated into the human genome. Finally, E7 has been shown to interact with DNA methyltransferase 1 (Dnmt1). Here, we sought to determine the mechanism by which E7 increases methylation in cervical cancer by using CCNA1 as a gene model. We investigated whether E7 induces CCNA1 promoter methylation, resulting in the loss of expression. Using both E7 knockdown and overexpression approaches in SiHa and C33a cells, our data showed that CCNA1 promoter methylation decreases with a corresponding increase in expression in E7 siRNA-transfected cells. By contrast, CCNA1 promoter methylation was augmented with a corresponding reduction in expression in E7-overexpressing cells. To confirm whether the binding of the E7-Dnmt1 complex to the CCNA1 promoter induced methylation and loss of expression, ChIP assays were carried out in E7-, del CR3-E7 and vector control-overexpressing C33a cells. The data showed that E7 induced CCNA1 methylation by forming a complex with Dnmt1 at the CCNA1 promoter, resulting in the subsequent reduction of expression in cancers. It is interesting to further explore the genome-wide mechanism of E7 oncoprotein-mediated DNA methylation.
    Matched MeSH terms: DNA Methylation/genetics*
  20. Elias MH, Azlan H, Baba AA, Ankathil R
    PMID: 29669505 DOI: 10.2174/1871529X18666180419101416
    BACKGROUND: In exploring the cause of Imatinib Mesylate (IM) resistance among Chronic Myeloid Leukemia (CML) patients who do not harbor BCR-ABL dependent mechanism, BCR-ABL independent pathways are the most probable pathways that should be explored. In BCR-ABL independent pathway, SOCS1 plays an important role as it helps in regulating optimal JAK/STAT activity.

    OBJECTIVE: To identify the association of SOCS1 gene hypermethylation in mediating IM Resistance.

    METHOD: The SOCS1 promoter methylation level of 92 BCR-ABL non mutated IM resistant CML patients, 83 IM good response CML patients and 5 normal samples from healthy individuals were measured using Methylation Specific-High Resolution Melt (MS-HRM) analysis.

    RESULTS: Both primers used to amplify promoter region from -333 to -223 and from -332 to -188 showed less than 10% methylation in all CML and normal samples. Consequently, there was no significant difference in SOCS1 promoter methylation level between IM resistant and IM good response patients.

    CONCLUSION: SOCS1 promoter methylation level is not suitable to be used as one of the biomarkers for predicting the possibility of acquiring resistance among CML patients treated with IM.

    Matched MeSH terms: DNA Methylation*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links